Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий

Здесь есть возможность читать онлайн «Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Альпина, Жанр: Физика, Прочая научная литература, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Физика повседневности. От мыльных пузырей до квантовых технологий: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Физика повседневности. От мыльных пузырей до квантовых технологий»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Почему при течении воды в реках возникают меандры? Как заставить бокал запеть? Можно ли построить переговорную трубку между Парижем и Марселем? Какие законы определяют форму капель и пузырьков? Что происходит при приготовлении жаркого? Можно ли попробовать спагетти альденте на вершине Эвереста? А выпить там хороший кофе? На все эти вопросы, как и на многие другие, читатель найдет ответы в этой книге. Каждая страница книги приглашает удивляться, хотя в ней обсуждаются физические явления, лежащие в основе нашей повседневной жизни. В ней не забыты и последние достижения физики: авторы посвящают читателя в тайны квантовой механики и сверхпроводимости, рассказывают о физических основах магнитно-резонансной томографии и о квантовых технологиях. От главы к главе читатель знакомится с неисчислимыми гранями физического мира. Отмеченные Нобелевскими премиями фундаментальные результаты следуют за описаниями, казалось бы, незначительных явлений природы, на которых тем не менее и держится все величественное здание физики.

Физика повседневности. От мыльных пузырей до квантовых технологий — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Физика повседневности. От мыльных пузырей до квантовых технологий», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Просим вас запастись терпением и довериться нам, как когда-то Данте доверился своему проводнику во время путешествия в Ад.

Не пытайтесь сразу разобраться во всем, потому что тайны квантового мира, как и закоулки Дантова Ада, бесчисленны и еще ждут своих исследователей. Скорее всего, некоторые из них до конца не поняты и вашими проводниками…

Глава 22

Неопределенность – основа квантовой физики

Нельзя точно измерить одновременно и положение, и скорость частицы. Этот «принцип неопределенности» противоречит здравому смыслу. Тем не менее он лежит в основе квантовой физики, которая описывает мир в масштабе нанометров.

1900 год, знаменующий начало XX века, является еще и датой возникновения квантовой механики. Именно тогда Макс Планк нашел решение задачи, поставленной Густавом Кирхгофом четырьмя десятилетиями ранее (см. главу 7, «Формула Планка»). Решение Планка основывалось на предположении, что энергия физической системы квантуется, то есть, например, если монохроматический свет частотой υ заключен в зеркальной камере, то его энергия обязательно окажется кратной одному «кванту» энергии, равному hυ, где h – постоянная Планка. Сперва эта гипотеза казалась относительно невинной. Однако спустя тридцать лет выяснилось, что она бросает вызов детерминистическому пониманию физики…

Принцип неопределенности

В 1927 году немецкий физик Вернер Гейзенберг сформулировал следующий принцип, называемый принципом неопределенности. Рассмотрим частицу массой m , которая движется по оси O x со скоростью v . Если нам удастся измерить ее скорость с точностью Δ v , то ее положение x оказывается невозможным определить с точностью Δ x более высокой, чем ħ /( m Δ v ), где ħ = 1,054⋅10 –34Дж⋅с [26] Предложенная Максом Планком постоянная h (см. главу 7, «Формула Планка») равна 2π ħ . Обычно именно h подразумевают под постоянной Планка. Далее постоянной Планка мы будем называть и h, и ħ . . Иными словами, m Δ x Δ vħ . Это утверждение можно распространить и на движение частицы, перемещающейся в трехмерном пространстве. Вместо того чтобы рассуждать о ее скорости v →, часто вводят импульс p →= mv →. В этом случае соотношение неопределенности записывают следующим образом:

Δ x Δ p xħ . (1)

Аналогично оно записывается и для двух других составляющих вектора импульса и координат.

Это неравенство удивительно. Законы Ньютона, о которых мы говорили в главе 4, врезке «Ньютоновская механика», позволяют, исходя из начальных условий, очень точно определить положение и скорость объекта в любой момент времени. В физике Ньютона, так называемой классической механике, нет места для неопределенности. Но этот детерминизм, свойственный макроскопическому миру, перестает действовать в атомном масштабе. Объясним, почему это происходит.

Для начала приведем иллюстрацию соотношений неопределенности. Направим поток частиц (например, электронов или нейтронов) на стенку, в которой есть отверстие диаметром Δ x (илл. 1). Некоторые из них пролетят через отверстие. В момент прохождения их положение определяется в плоскости стенки с точностью Δ x . При этом параллельные этой плоскости составляющие их скорости могут быть известны только с некоторой неопределенностью, обратно пропорциональной Δ x . Даже если скорость какой-то частицы при подлете строго перпендикулярна стенке, то после прохода через отверстие скорости всех прошедших частиц распределятся внутри некоторого телесного угла. Таким образом, здесь мы сталкиваемся с тем же явлением дифракции, что и в случае световых лучей, проходящих через узкую щель (см. главу 4, илл. 6).

1 Если частица проходит через отверстие или щель ширины Δ x то ее положение - фото 281

1. Если частица проходит через отверстие или щель ширины Δ x , то ее положение в направлении x известно с точностью Δ x . Согласно найденному Гейзенбергом неравенству, ее импульс в этом направлении может быть известен только с некоторой точностью Δ p x. Если частица является частью пучка, с импульсом p z вдоль оси O z , то прохождение пучка через щель вызывает его расхождение под углом, определяемым отношением Δ p x / p z

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Физика повседневности. От мыльных пузырей до квантовых технологий»

Представляем Вашему вниманию похожие книги на «Физика повседневности. От мыльных пузырей до квантовых технологий» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Физика повседневности. От мыльных пузырей до квантовых технологий»

Обсуждение, отзывы о книге «Физика повседневности. От мыльных пузырей до квантовых технологий» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x