Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий

Здесь есть возможность читать онлайн «Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Альпина, Жанр: Физика, Прочая научная литература, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Физика повседневности. От мыльных пузырей до квантовых технологий: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Физика повседневности. От мыльных пузырей до квантовых технологий»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Почему при течении воды в реках возникают меандры? Как заставить бокал запеть? Можно ли построить переговорную трубку между Парижем и Марселем? Какие законы определяют форму капель и пузырьков? Что происходит при приготовлении жаркого? Можно ли попробовать спагетти альденте на вершине Эвереста? А выпить там хороший кофе? На все эти вопросы, как и на многие другие, читатель найдет ответы в этой книге. Каждая страница книги приглашает удивляться, хотя в ней обсуждаются физические явления, лежащие в основе нашей повседневной жизни. В ней не забыты и последние достижения физики: авторы посвящают читателя в тайны квантовой механики и сверхпроводимости, рассказывают о физических основах магнитно-резонансной томографии и о квантовых технологиях. От главы к главе читатель знакомится с неисчислимыми гранями физического мира. Отмеченные Нобелевскими премиями фундаментальные результаты следуют за описаниями, казалось бы, незначительных явлений природы, на которых тем не менее и держится все величественное здание физики.

Физика повседневности. От мыльных пузырей до квантовых технологий — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Физика повседневности. От мыльных пузырей до квантовых технологий», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
7 Знаменитый Сольвеевский конгресс 1927 года собрал почти всех основателей - фото 290

7. Знаменитый Сольвеевский конгресс 1927 года собрал почти всех основателей квантовой механики. Семнадцать присутствующих ученых были удостоены Нобелевской премии! Первый ряд, слева направо: И. Ленгмюр, М. Планк, М. Кюри, Х. Лоренц, А. Эйнштейн, П. Ланжевен, Ш. Гюи, Ч. Вильсон и О. Ричардсон. Второй ряд: П. Дебай, М. Кнудсен, У. Брэгг, Х. Крамерс, П. Дирак, А. Комптон, Л. де Бройль, М. Борн, Н. Бор. Третий ряд: О. Пикар, Э. Анрио, П. Эренфест, Э. Герцен, Т. де Дондер, Э. Шрёдингер, Ж. Э. Вершафельт, В. Паули, В. Гейзенберг, Р. Фаулер, Л. Бриллюэн

Таким образом, в наномире нахождение электрона определяется законами вероятности. Расставленные нами отметки в совокупности напоминают облако, так же как капельки воды образуют в небе облака различной плотности. Такое «электронное облако» является более точным представлением об электроне, чем маленькая планета, вращающаяся вокруг ядра, как его изображал Резерфорд.

Волна де Бройля и уравнение Шрёдингера

Что же определяет структуру электронных облаков? Существует ли уравнение, которое описывает квантовую механику так же, как классическую механику описывают законы Ньютона (см. главу 4, врезку «Ньютоновская механика»)? Да, такое уравнение существует. Оно было предложено в 1925 году австрийским физиком Эрвином Шрёдингером (1887–1961) и является основой атомной физики и теоретической химии.

Теория Шрёдингера обобщила предложенную годом ранее французом Луи де Бройлем (1892–1987) революционную идею, которая состояла в том, что с любой частицей, обладающей импульсом p , можно связать волну длиной λ = h / p . Таким образом, любая частица может проявлять как корпускулярное поведение, так и волновое, как это делает свет (см. главу 3, «Интерференция и когерентность»). Подобно предложенной Джеймсом Максвеллом (1831–1879) волновой теории света, где электрическое поле E ( x, y, z, t ) является функцией времени и трех пространственных координат, уравнение Шрёдингера описывает состояние частицы с помощью «волновой функции» ψ ( x, y, z, t ), квадрат модуля которой определяет плотность вероятности нахождения частицы в заданный момент времени t в точке ( x, y, z ). Этот подход был основан на аналогии с оптикой, где квадрат модуля электрического поля определяет вероятность нахождения фотона в данной точке. Различие же заключается в том, что электрическое поле является физически измеримым, например, по его действию на электрически заряженные объекты, тогда как введенная де Бройлем «волновая функция» ясного физического смысла не имела.

Исследование твердых тел с помощью дифрактометрии

Дифракция электронов редко используется для изучения кристаллов, потому что электроны поглощаются материей куда сильнее, чем рентгеновские лучи (см. главу 9, «Дифракция рентгеновских лучей на кристаллах»). Гораздо больший интерес в этом аспекте представляет собой еще одна элементарная частица – нейтрон! Если речь идет о наблюдении легких атомов или изучении атомных магнитных свойств, то дифракция нейтронов оказывается предпочтительнее рентгеновских лучей. Последняя позволяет составлять карты электронной плотности, в то время как поляризованные нейтроны дают возможность исследовать не все, а лишь электроны, находящиеся на внешних оболочках атома, – именно те, которые определяют его химические и магнитные свойства (см. главу 23, «Метаморфозы углерода»). Недостатком этого метода является то, что для производства нейтронов требуются дорогие и громоздкие ядерные реакторы (см. илл.), в то время как рентгеновской установкой легко оснастить даже скромную лабораторию.

Реактор в Институте Лауэ Ланжевена в Гренобле Нейтроны образуются в - фото 291

Реактор в Институте Лауэ – Ланжевена в Гренобле. Нейтроны образуются в результате протекающих ядерных реакций (см. главу 13, илл. 3) и используются для спектрометрических исследований конденсированных сред. Активная зона реактора, помещенная в резервуар с тяжелой водой, погружена в бассейн, который поглощает испускаемое излучение. Голубоватый свет, освещающий бассейн, обусловлен эффектом Вавилова – Черенкова. Работа реактора управляется с помощью специальных стержней, поглощающих нейтроны, которые могут извлекаться в зависимости от количества оставшегося урана

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Физика повседневности. От мыльных пузырей до квантовых технологий»

Представляем Вашему вниманию похожие книги на «Физика повседневности. От мыльных пузырей до квантовых технологий» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Физика повседневности. От мыльных пузырей до квантовых технологий»

Обсуждение, отзывы о книге «Физика повседневности. От мыльных пузырей до квантовых технологий» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x