Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий

Здесь есть возможность читать онлайн «Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Альпина, Жанр: Физика, Прочая научная литература, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Физика повседневности. От мыльных пузырей до квантовых технологий: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Физика повседневности. От мыльных пузырей до квантовых технологий»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Почему при течении воды в реках возникают меандры? Как заставить бокал запеть? Можно ли построить переговорную трубку между Парижем и Марселем? Какие законы определяют форму капель и пузырьков? Что происходит при приготовлении жаркого? Можно ли попробовать спагетти альденте на вершине Эвереста? А выпить там хороший кофе? На все эти вопросы, как и на многие другие, читатель найдет ответы в этой книге. Каждая страница книги приглашает удивляться, хотя в ней обсуждаются физические явления, лежащие в основе нашей повседневной жизни. В ней не забыты и последние достижения физики: авторы посвящают читателя в тайны квантовой механики и сверхпроводимости, рассказывают о физических основах магнитно-резонансной томографии и о квантовых технологиях. От главы к главе читатель знакомится с неисчислимыми гранями физического мира. Отмеченные Нобелевскими премиями фундаментальные результаты следуют за описаниями, казалось бы, незначительных явлений природы, на которых тем не менее и держится все величественное здание физики.

Физика повседневности. От мыльных пузырей до квантовых технологий — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Физика повседневности. От мыльных пузырей до квантовых технологий», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Сомнения могут оставаться только для наименьших значений A , то есть для водорода ( A = 1) и гелия ( A = 4). Оказывается, что только гелий (He) является исключением из правила: если давление не превышает 2,5 Мпа, то нулевые колебания действительно делают его кристаллическое состояние неустойчивым при любых температурах. Все остальные простые тела, включая водород H 2 , при приближении температуры к абсолютному нулю рано или поздно затвердевают при любом давлении.

Квантование магнитного момента

Мы уже видели, что согласно квантовой механике ни в какой момент времени невозможно установить точные значения положения r →и скорости v →электрона, вращающегося вокруг ядра. Еще более необычными оказываются свойства его магнитного момента.

Магнитный момент – это векторная величина, характеризующая свойство определенных объектов ориентироваться в магнитном поле. Например, стрелка компаса располагается по магнитному полю Земли, указывая направление на Северный магнитный полюс. Многие из элементарных частиц и объектов атомного масштаба также обладают магнитным моментом: электрон, нейтрон, протон, а также бо́льшая часть ядер, атомов и ионов.

Пространственные составляющие магнитного момента обозначаются как µ x , µ y , µ z . Когда стрелка компаса сориентирована в определенном направлении, то четко определены и все три составляющие ее магнитного момента. В отличие от компаса, электрон или нейтрон являются объектами, принадлежащими к квантовому миру. Для них может быть измерена только одна из трех составляющих магнитного момента, при этом она способна принимать только два противоположных значения: –µ или +µ. Это, казалось бы, парадоксальное утверждение было подтверждено экспериментально: первыми опытные данные, говорящие в пользу квантования магнитного момента представителей квантового мира, еще в 1922 году получили Отто Штерн и Вальтер Герлах. В своих экспериментах они направляли пучок атомов серебра (которые благодаря электронам внешней оболочки обладают магнитным моментом) сквозь неоднородное магнитное поле. В результате было обнаружено, что этот пучок разделяется строго пополам, что и доказывает квантование магнитного момента всего на два дискретных значения (илл. 8). Действительно, если бы магнитный момент мог принимать хотя бы три значения, то и пучок делился бы натрое, а если бы магнитный момент атомов серебра мог меняться непрерывно, то и пучок просто расходился бы в конус.

Еще несколько слов о пучке атомов серебра. Выберем ось x вдоль направления магнитного поля. Тогда существует такое состояние атома серебра, в котором µ x = –µ, и другое, в котором µ x = +µ. Существует также состояние, при котором µ y = µ. Что произойдет, если частица находится в этом состоянии и измеряется компонент µ x ? Измерение с равной вероятностью даст µ x = –µ или µ x = +µ. Таким образом, среднее значение всех измерений µ x , которые можно произвести в состоянии µ y = µ, равно нулю. То же самое относится к среднему значению всех измерений µ x в состоянии µ y = –µ. Чтобы принять в расчет эти свойства, в квантовой механике считается, что состояние µ y = µ является «соединением» состояний µ x = –µ и µ x = µ.

Если частица находится в состоянии с µ x = µ, магнитный момент получится ±µ с той же вероятностью, и поэтому среднее значение большого числа мер будет равно нулю. Это то же самое из средних измерений, которые можно выполнить с магнитным моментом в состоянии µ x = –µ. Чтобы понять значение этого свойства в рамках квантовой механики, утверждается, что состояние µ y = µ на самом деле представляет собой смесь состояний, имеющих µ x = + µ и µ x = –µ.

Результат, предсказываемый классической физикой: непрерывная линия.

8 Принцип опыта Штерна Герлаха Атомы серебра проходят через вертикально - фото 293

8. Принцип опыта Штерна – Герлаха. Атомы серебра проходят через вертикально направленное неоднородное магнитное поле. Согласно классической физике, пучок частиц с непрерывным распределением магнитного момента должен расходиться конусом. Опыт же показывает, что он делится на две компоненты

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Физика повседневности. От мыльных пузырей до квантовых технологий»

Представляем Вашему вниманию похожие книги на «Физика повседневности. От мыльных пузырей до квантовых технологий» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Физика повседневности. От мыльных пузырей до квантовых технологий»

Обсуждение, отзывы о книге «Физика повседневности. От мыльных пузырей до квантовых технологий» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x