Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий

Здесь есть возможность читать онлайн «Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Альпина, Жанр: Физика, Прочая научная литература, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Физика повседневности. От мыльных пузырей до квантовых технологий: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Физика повседневности. От мыльных пузырей до квантовых технологий»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Почему при течении воды в реках возникают меандры? Как заставить бокал запеть? Можно ли построить переговорную трубку между Парижем и Марселем? Какие законы определяют форму капель и пузырьков? Что происходит при приготовлении жаркого? Можно ли попробовать спагетти альденте на вершине Эвереста? А выпить там хороший кофе? На все эти вопросы, как и на многие другие, читатель найдет ответы в этой книге. Каждая страница книги приглашает удивляться, хотя в ней обсуждаются физические явления, лежащие в основе нашей повседневной жизни. В ней не забыты и последние достижения физики: авторы посвящают читателя в тайны квантовой механики и сверхпроводимости, рассказывают о физических основах магнитно-резонансной томографии и о квантовых технологиях. От главы к главе читатель знакомится с неисчислимыми гранями физического мира. Отмеченные Нобелевскими премиями фундаментальные результаты следуют за описаниями, казалось бы, незначительных явлений природы, на которых тем не менее и держится все величественное здание физики.

Физика повседневности. От мыльных пузырей до квантовых технологий — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Физика повседневности. От мыльных пузырей до квантовых технологий», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

С помощью уравнения Шрёдингера оказалось возможным найти пространственное распределение плотности вероятности электрона для его возможных состояний в атоме водорода. Изобразив эти распределения плотности вероятности на плоскости разными цветами, получают изображение различных атомных орбиталей (областей, в которых вероятность нахождения электрона наиболее высока). Такие изображения заменяют электронные орбиты модели атома Бора (илл. 5) и наглядно представляют поведение электронов в атоме. Основанные на уравнении Шрёдингера расчеты объясняют существование дискретных уровней энергии, которые и являются причиной линейчатых спектров, наблюдаемых при излучении и поглощении света. Подобные, но более сложные вычисления позволяют понять, как между атомами образуются химические связи.

Заметим, что работы де Бройля и Шрёдингера предшествовали открытию Гейзенбергом принципа неопределенности. Последний прост, краток, элегантен, однако содержит меньше информации, чем уравнение Шрёдингера.

Опыт Дэвиссона – Джермера

Предложенная де Бройлем концепция связи между волнами и частицами, так называемый корпускулярно-волновой дуализм, привела к идее применения оптических методов исследования с заменой света на потоки частиц. Так, в 1927 году американские физики Клинтон Дэвиссон и Лестер Джермер бомбардировали электронами кристалл никеля. В результате они получили дифрактограммы, подобные возникающим при облучении кристаллов рентгеновскими лучами (см. врезку). Для интерпретации полученных дифракционных картин электронам следовало приписать определенную длину волны, и она совпадала с величиной, предсказанной де Бройлем. Таким образом, эксперимент блестяще подтвердил его гипотезу.

Нулевые колебания атомов

Принцип неопределенности позволяет получить интересную информацию о движении атомов в твердых телах. Под твердыми телами здесь мы будем подразумевать кристаллы (см. главу 9), поскольку при низких температурах кристаллическая структура является устойчивой формой существования почти всех чистых веществ. Атомы в кристалле не являются неподвижными: они колеблются вокруг положения равновесия. Амплитуда этих колебаний очень мала: расстояние между двумя соседними атомами всегда остается близким к своему среднему значению, которое составляет около нескольких десятых нанометра. Как правило, эти колебания обусловлены тепловым движением: чем температура выше, тем больше амплитуда колебаний (см. главу 22, врезку «Броуновское движение»). Что же происходит, когда температура опускается до абсолютного нуля (0 К, то есть –273,15 °C)? Можно предположить, что колебания прекращаются и атомы замирают. Однако в этом случае их положение было бы точно фиксировано, в то время как скорость была бы равна нулю, то есть Δ x = Δ p = 0, что нарушило бы соотношение неопределенности (1) (см. главу 22). Отсюда следует, что движение атомов прекратиться не может даже при абсолютном нуле температур: в этом случае тепловые колебания сменяются на «нулевые колебания».

Попробуем разобраться в этом подробнее на примере простого кристалла, состоящего из атомов лишь одного сорта (например, водорода, кислорода, железа). Упрощенное, но качественно приемлемое описание движения атома в кристалле относительно его соседей можно получить, предполагая, что при отклонении от положения равновесия на него действует возвращающая сила, пропорциональная расстоянию, так как если бы его удерживала пружина. В таком случае движение атома относительно положения равновесия описывается формулой x ( t ) = x 0 cos (ω t – α), где x 0 – максимальная амплитуда колебаний (для двух других координат формулы аналогичны). При этом скорость атома v x ( t ) = –ω x 0 sin (ω t – α). Соотношение неопределенности требует, чтобы Δ x Δ vħ / m , и, следовательно, ω x 0 2было не менее ħ / m , где m – масса атома. Частота ω для большинства веществ лежит в диапазоне между 10 13и 10 14Гц (характерную частоту колебаний атома в твердых телах называют частотой Дебая). Заменяя массу m на A m n , где A – массовое число (см. главу 13, врезку «Элементы ядерной физики»), а m n – средняя масса нуклона (около 1,67⋅10 –27кг), получим, что x 0 в метрах должна составлять не менее картинка 292 Это условие устанавливает верхнюю границу для амплитуды нулевых колебаний в 1/100 нм, которая, как правило, мала в сравнении с равновесным расстоянием между соседними атомами. Поэтому нет оснований полагать, что нулевые колебания в твердых телах разрушают его устойчивость.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Физика повседневности. От мыльных пузырей до квантовых технологий»

Представляем Вашему вниманию похожие книги на «Физика повседневности. От мыльных пузырей до квантовых технологий» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Физика повседневности. От мыльных пузырей до квантовых технологий»

Обсуждение, отзывы о книге «Физика повседневности. От мыльных пузырей до квантовых технологий» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x