Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]

Здесь есть возможность читать онлайн «Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2021, ISBN: 2021, Издательство: Издательство Питер, Жанр: Базы данных, popular_business, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Роман с Data Science. Как монетизировать большие данные [litres]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Роман с Data Science. Как монетизировать большие данные [litres]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.
Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.
В формате PDF A4 сохранен издательский макет.

Роман с Data Science. Как монетизировать большие данные [litres] — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Роман с Data Science. Как монетизировать большие данные [litres]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В сводных таблицах есть два типа данных: измерения (dimensions) и показатели (или меры, measures). Измерения представлены в формате системы координат. Когда я слышу слово «измерения», я представляю себе три оси координат, выходящие из одной точки перпендикулярно по отношению друг другу – как нас учили на уроках геометрии. Измерений (осей) может быть гораздо больше трех. Их можно будет использовать в виде столбцов, строк или фильтров сводной таблицы, но их нельзя помещать в ячейки. Примеры измерений:

• Дата и время.

• Тип клиента.

• Статус клиента.

Показатели – это уже статистики, которые будут рассчитываться в сводной таблице, когда вы будете «вращать» или менять измерения. Они, как правило, агрегатные: суммы, средние, количество уникальных значений (distinct count), количество непустых значений (count). Примеры показателей для нашей задачи:

• Сумма заказов.

• Средний чек заказа.

• Количество заказов (уникальность здесь обеспечена тем, что одна строка – это заказ, дублей заказов нет).

• Количество уникальных клиентов (нужно считать число уникальных ID, так как один клиент может сделать несколько заказов, и его посчитают несколько раз).

ID заказов и ID клиентов могут быть как измерениями – тогда вы сможете считать статистику по конкретным заказам или клиентам, так и показателями – тогда можно просто посчитать количество заказов или клиентов. Это целиком зависит от вашей задачи, оба способа работают.

Аналитик определяет для каждого столбца, являются ли данные в нем измерениями или показателями, а также какие статистики по показателям ему нужны. Подготовительные работы закончены, теперь время сформулировать гипотезы и для каждой из них определить один или несколько срезов, которые подтвердят гипотезу или опровергнут. Понятие среза происходит из многомерной природы сводных таблиц. Представьте себе трехмерный предмет, имеющий следующие измерения: длину, ширину и высоту. Пусть это будет кусок сливочного масла. Вы берете нож, разрезаете его и получаете срез, причем плоскость среза перпендикулярна оси, которую вы фиксируете. То же самое вы проделываете, когда работаете со сводной таблицей – делаете срез многомерных данных. Осей может быть много, это число равно числу измерений – вот откуда берется многомерность. Место на оси (измерение), перпендикулярно которой режете, попадет в фильтр отчета как значение. Вы фиксируете его. Измерения, которые будут лежать в плоскости среза, будут столбцами и строками нашей таблицы. Если фильтр отчета не используется, то все данные будут спроецированы на наш срез при помощи операции агрегации, которая для каждого показателя выбирается индивидуально (суммы, средние, количество).

Аналитик формулирует две гипотезы относительно падения продаж:

• Изменение поведения вызвано одним из типов клиента. Для этой гипотезы одно из измерений – тип клиента.

• Изменение поведения вызвано одной из групп лояльности. Для этой гипотезы одно из измерений – статус лояльности клиента.

Так как у нас произошли изменения во времени, то нам понадобится еще одно измерение – время. Итак, гипотеза и нужный срез данных сформулированы, а дальше дело техники: мышью перетащить нужные измерения, например, дату в столбцы, тип клиента в строки. Заполнить таблицу нужными показателями и проверить, подтверждается ли проверяемая гипотеза цифрами или нет. Правильность гипотезы желательно проверить подходящим статистическим критерием для гипотез, что в реальности делается довольно редко.

Гипотезы можно формулировать и проверять последовательно, а когда наработается опыт, то они будут формулироваться на уровне подсознания. Аналитик будет играть ими, чтобы найти самую вероятную причину проблемы или успеха: делать первый срез, а потом добавлять измерения, пересекая их со старыми, и изменять показатели.

Если бы не было электронных таблиц и средств визуального анализа на сводных таблицах, то скорость подобного типа анализа была бы в десятки раз ниже. Аналитику пришлось бы программировать каждый срез, например, через оператор GROUP BY в SQL или pivot в питоновской библиотеке pandas. Со сводными таблицами аналитик работает со скоростью своей мысли.

OLAP-кубы

Сводные таблицы бывают не только в электронных таблицах. Большие объемы данных туда не поместить – они будут очень медленно работать, если вообще туда поместятся. А мы ведь хотим, чтобы все работало со скоростью мысли, не правда ли? Для этого производители софта идут на всякие ухищрения, например, размещают данные в колоночной базе данных прямо на компьютере пользователя (о преимуществах колоночных баз данных уже написано в главе про хранилища). Второй способ – делать все вычисления на серверах, а пользователю предоставить туда доступ через интерфейс (толстый или тонкий клиент). Именно так были придуманы кубы OLAP (On-Line Analytical Processing – интерактивный анализ данных).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Роман с Data Science. Как монетизировать большие данные [litres]»

Представляем Вашему вниманию похожие книги на «Роман с Data Science. Как монетизировать большие данные [litres]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Роман с Data Science. Как монетизировать большие данные [litres]»

Обсуждение, отзывы о книге «Роман с Data Science. Как монетизировать большие данные [litres]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x