Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]

Здесь есть возможность читать онлайн «Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2021, ISBN: 2021, Издательство: Издательство Питер, Жанр: Базы данных, popular_business, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Роман с Data Science. Как монетизировать большие данные [litres]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Роман с Data Science. Как монетизировать большие данные [litres]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.
Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.
В формате PDF A4 сохранен издательский макет.

Роман с Data Science. Как монетизировать большие данные [litres] — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Роман с Data Science. Как монетизировать большие данные [litres]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Для начала выделим две функции таких систем: предоставление дашбордов и служебных отчетов. О дашбордах я писал в прошлых главах. Служебные отчеты предназначены для автоматизации и упрощения задач сотрудника. Например, это могут быть контакты проблемных клиентов для прозвона, скоринг клиентов по эффективности внедрения системы рекомендаций на сайт, поисковые фразы с пустой страницей результатов. Эти отчеты даже встраивают как компонент в существующие бизнес-процессы.

Любой отчет, или дашборд, состоит из блоков: таблиц и графиков. Блоки часто бывают независимы друг от друга, но связаны общими параметрами. Отличный пример такого параметра – дата и время. Атрибут практически любого отчета – период, который этот отчет охватывает. В хорошей отчетной системе этот параметр несложно «пробросить» на все блоки. Как это выглядит для пользователя: пользователь открывает в браузере нужный отчет, вводит период (дата начала и конца), ждет некоторое время и получает результат. Как это выглядит для разработчика: разработчик собирает несколько блоков в отчет, указывает имена общих параметров в каждом блоке, указывает имена параметров в общем отчете и публикует отчет. Выглядит просто, но не во всех отчетных системах это сделано удобно. Мой недавний пример из Retail Rocket: для хранилища на ClickHouse вначале выбрали SuperSet. Столкнулись с огромным количеством неудобств в параметрах. В итоги перешли на Metabase, где подобные параметрические отчеты делаются намного проще. Обе системы полностью бесплатны, с открытым исходным кодом.

Толстый или тонкий клиент? Толстый клиент означает наличие специальной программы на компьютере для просмотра отчетов, тонкий – вся работа идет через браузер. Обычно предпочитают работать через тонкий клиент из-за низкого порога входа: нужно авторизоваться через браузер и начать пользоваться системой. В толстых клиентах намного больше возможностей, но на их обучение придется потратить больше времени. Толстые клиенты важны для работы с мобильных телефонов, они адаптируют интерфейсы, пусть и урезанные.

Администрирование пользователей удобно, когда есть единая система учета. В таком случае пользователям не нужно помнить множество паролей, а администраторам легко регулировать доступ. По своему опыту скажу, что если компания использует, например, G Suite для бизнеса от Google, то система отчетности, которая может использовать ту же самую авторизацию, будет удобнее, чем не использующая. Например, тот же Metabase [47] позволяет авторизоваться через Google, а SuperSet [48] нет.

Рассылка отчетов бывает периодической, когда она происходит по часам или определенным дням, и триггерной – в ответ на появление какого-либо события или изменения показателя. Триггерные рассылки часто используются в ИТ, например, чтобы поймать момент, когда падает какая-либо система или критически поднимается нагрузка. Для этого на определенный показатель системы выставляется пороговое значение, при превышении которого высылается соответствующее письмо. В бизнесе сложнее – там показатели не так быстро меняются: в интернет-магазине, например, можно поставить пороговые значения на количество заказов за последний час или трафик, чтобы как можно быстрее узнать о проблеме и избежать большой потери выручки. Отчеты могут присылаться в теле письма, что удобнее (вы сразу увидите результат), в приложенных файлах, например в формате Excel, или краткий отчет в теле письма, а расширенный доступен по ссылке. Удобство отчетов по электронной почте зависит от задач: если нужно быстро взглянуть на графики в мобильном телефоне, то лучше, когда отчет в теле письма; если с цифрами нужно будет работать – файл с электронной таблицей будет идеальным вариантом.

Что будет, если отчет запустить несколько раз подряд? Например, несколько пользователей с разницей в одну минуту запросят один и тот же отчет. Ждать очередные пять минут, пока он считается? Это зависит от схемы кэширования – в хорошей системе она есть. При публикации отчета выставляется период кэширования или сохранения прошлых результатов. Например, если выставить период в 30 минут, то после расчета данные отчета будут сохранены для последующих запросов ровно на 30 минут. И все последующие отчеты будут уже использовать их. Это очень полезно для тяжелых вычислений, пусть при кэшировании данные в отчете могут отставать от хранилища. В Ozon.ru одно время в системе back-office был отчет с текущими результатами дня. Отчет очень часто обновляли сотрудники из азарта. Это привело к DoS (Denial of Service – отказ в обслуживании) – атаке, которая ухудшила производительность. Кэширование отчета на определенное время остудило пыл азартных любителей цифр и разгрузило систему приема заказов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Роман с Data Science. Как монетизировать большие данные [litres]»

Представляем Вашему вниманию похожие книги на «Роман с Data Science. Как монетизировать большие данные [litres]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Роман с Data Science. Как монетизировать большие данные [litres]»

Обсуждение, отзывы о книге «Роман с Data Science. Как монетизировать большие данные [litres]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x