Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]

Здесь есть возможность читать онлайн «Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2021, ISBN: 2021, Издательство: Издательство Питер, Жанр: Базы данных, popular_business, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Роман с Data Science. Как монетизировать большие данные [litres]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Роман с Data Science. Как монетизировать большие данные [litres]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.
Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.
В формате PDF A4 сохранен издательский макет.

Роман с Data Science. Как монетизировать большие данные [litres] — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Роман с Data Science. Как монетизировать большие данные [litres]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Личный опыт

Не надо бояться. Свое первое хранилище я стал собирать в 2004 году в Ozon.ru. Мне в работе очень помогло обучение «MS SQL Server» в «Софтлайне», когда я еще работал в StatSoft. Этот сертификат хранится у меня до сих пор. Я ничего практически не знал об этом, но знакомство с SQL Server и опора на здравый смысл сделали свое дело – я создал своего первого «паука», который закачивал данные в наспех собранное хранилище. Мне никто не помогал в этом, но никто и не мешал, что очень важно. Схема хранилища модифицировалась, но ее концепт, заложенный в самом начале, остался прежним. В Wikimart.ru я, работая два дня в неделю, собрал первую версию аналитической системы с полной внутренней веб-аналитикой всего за два месяца. Если вы хотите лучше узнать принципы построения хранилищ, рекомендую обратиться к трудам Ральфа Кимбалла – я в них почерпнул много полезного.

А теперь о сложностях. К моменту моего ухода из Ozon.ru расхождение данных о продажах в хранилище с бухгалтерией составляло 4–5 %. При этом бухгалтерия закрывала период в течение месяца, а данные в кубах аналитической системы были уже в первый день следующего месяца. После ухода из Ozon.ru я встречался с операционным директором «Связного» – целая небольшая команда пришла пообщаться со мной по поводу «строительства кубов». Они очень удивились тому, что я сделал весь основной движок в одиночку. Это не я такой крутой, это вопрос допустимой погрешности системы. Чем меньшего процента расхождения с бухгалтерией мы хотим достичь, тем сложнее его получить. Допустим, нужно уменьшить расхождение с 4 до 3 %. Это потребует большего вовлечения меня, найма одного-двух человек, усложнения системы, а следовательно, увеличения управленческой «энтропии». Если мы хотим продолжать дальше – спуститься до двух процентов, это потребует уже на порядок больше усилий. Каждое уменьшение будет требовать усложнения и удорожания по экспоненте. Но что мы теряем? Мы теряем гибкость, мы теряем маневренность. Не нужно молиться на нулевую погрешность, ее никогда не будет. Помните про правило Парето – 20 % усилий дают 80 % результата, и не факт, что остальные 80 % усилий стоит затрачивать. Возможно, стоит потратить их на что-то другое, что сделает нас ближе к цели, а не стремиться к идеально вылизанным цифрам.

Глава 7

Инструменты анализа данных

Как вы помните из предыдущих глав классическая аналитика данных делится на два - фото 24

Как вы помните из предыдущих глав, классическая аналитика данных делится на два этапа – поиск гипотез и их статистическая проверка. Для формирования гипотез нам понадобятся описательная статистика, визуализация данных и доменные знания, например, какие события в компании произошли.

Для первых двух пунктов существует много видов программного обеспечения, которое облегчает и ускоряет труд аналитика. Здесь я рассмотрю диаметрально разные подходы. Можно быть приверженцем только одного из них, но расширить кругозор полезно – вдруг альтернативный подход будет удобнее.

Я делю эти инструменты по способу взаимодействия с пользователем. Это деление весьма условно, так как некоторые категории могут пересекаться друг с другом.

• Электронные таблицы – Microsoft Excel, Open Office Calc, Google Docs Sheets.

• Программные сервисы блокнотов, например Jupyter Notebook, Netflix Polynote, Google Colab, R studio.

• Визуальные инструменты – Tableau, Google Data Studio, Yandex Data Lens, Microsoft Power BI, Amazon QuickSight.

• Специализированные статистические пакеты – SAS, SPSS, Statistica, Knime, Orange data mining.

Электронные таблицы

Электронные таблицы – одни из самых распространенных инструментов анализа данных. Впервые я познакомился с ними еще в 1997 году, когда делал таблицы для школьного реферата по географии в Quattro Pro, чем произвел впечатление на учительницу географии. Я много дней ходил на работу к отцу, который в то время занимался IT-технологиями, набирал текст на клавиатуре и масштабировал карты стран на ксероксе. В итоге получился полностью напечатанный реферат, что было очень примечательно в те времена, особенно в Твери. Затем я работал c Microsoft Excel, потом в Google Sheets, которые сделали очень легкой совместную работу в облаке. В чем плюс электронных таблиц:

• низкий порог входа;

• все делается интуитивно и наглядно: добавление нового столбца или формулы;

• есть возможность анализа сводных таблиц (pivot) – самый мощный инструмент генерации гипотез;

• очень легко делать графики.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Роман с Data Science. Как монетизировать большие данные [litres]»

Представляем Вашему вниманию похожие книги на «Роман с Data Science. Как монетизировать большие данные [litres]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Роман с Data Science. Как монетизировать большие данные [litres]»

Обсуждение, отзывы о книге «Роман с Data Science. Как монетизировать большие данные [litres]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x