Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]

Здесь есть возможность читать онлайн «Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2021, ISBN: 2021, Издательство: Издательство Питер, Жанр: Базы данных, popular_business, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Роман с Data Science. Как монетизировать большие данные [litres]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Роман с Data Science. Как монетизировать большие данные [litres]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.
Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.
В формате PDF A4 сохранен издательский макет.

Роман с Data Science. Как монетизировать большие данные [litres] — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Роман с Data Science. Как монетизировать большие данные [litres]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Интерактивный анализ – это когда вы исследуете данные, проваливаясь вглубь цифр и метрик; он де-факто считается стандартом любой аналитической системы. Есть графический тип анализа, хороший пример – Google Analytics: практически все тут можно сделать мышью. Второй тип – сводные таблицы. Я больше склонен именно к такому типу анализа. Делаю выборку данных, копирую ее в любую электронную таблицу, включаю анализ сводных таблиц (pivot table), а далее уже в интерфейсе «кручу» данные. На самом деле почти всегда, когда мы работаем с интерактивным анализом данных, мы работаем со сводными таблицами.

Если вкратце, то мои минимальные требования к отчетной системе такие:

• авторизация пользователей, желательно завязанная на корпоративную систему доступа;

• тонкий клиент, доступ через веб-браузер;

• возможность просмотра отчета, полученного по электронной почте, сразу на экране;

• несложная параметризация большого отчета, состоящего из множества блоков;

• кэширование результатов.

Сводные таблицы

Сводные таблицы (pivot tables) – это самое лучшее, что было изобретено в разведочном анализе данных. Если аналитик хорошо владеет сводными таблицами, он всегда заработает на хлеб с маслом. Сводная таблица избавляет нас от огромного числа бесполезных запросов к данным, когда нужно просто найти хоть какую-то зацепку. Я уже писал выше про свой личный шаблон интерактивного анализа данных: сделать выборку данных, скопировать данные в электронные таблицы, построить сводную таблицу и работать с ней. Этот способ сэкономил мне годы по сравнению с прямыми методами – подсчетом описательных статистик, построением простых графиков, то есть стандартными операциями анализа данных для любых аналитических инструментов. А теперь разберем по пунктам, как работать со сводными таблицами.

Во-первых, нужно подготовить данные. Они должны выглядеть как таблица фактов (fact table), которая делается на основе таблиц состояния на определенный момент или лога изменений данных (вспоминаем главу про данные). Если в таблице используются непонятные обычному человеку идентификаторы и у вас есть справочники на них, то лучше расшифровать это поле, присоединив (join или merge) данные справочника к таблице фактов. Поясню на примере. Мы ищем причину падения продаж. Пусть у нас есть таблица состояния заказов на определенный момент, у нее есть следующие поля:

• Дата и время создания заказа (например, 10 ноября 2020 года 12:35:02).

• ID типа клиента, который совершил заказ (1, 2).

• ID статуса клиента в программе лояльности (1, 2, 3).

• ID заказа (2134, 2135, …).

• ID клиента (1, 2, 3, 4…).

• Сумма заказа в рублях (102, 1012…).

Эта таблица будет таблицей фактов, так как в ней записаны факты появления заказов. Аналитик хочет увидеть, как заказывали клиенты разных типов и статусов в программе лояльности. У него есть гипотеза, что там находится основная причина изменения продаж. ID-поля нечитаемы и созданы для нормализации таблиц в учетной базе данных, но у нас есть справочники (табл. 7.1–7.2), которые полностью расшифровывают их.

Таблица 7.1. Справочник типа клиента

Таблица 72 Статусы клиента в программе лояльности После соединения join или - фото 28

Таблица 7.2. Статусы клиента в программе лояльности

После соединения join или merge таблицы фактов со справочниками мы получим - фото 29

После соединения (join или merge) таблицы фактов со справочниками мы получим обновленную таблицу (табл. 7.3) фактов:

• datetime – дата и время создания заказа (например, 10 ноября 2020 года 12:35:02).

• client_type – тип клиента, который совершил заказ (физическое или юридическое лицо).

• client_status – статус клиента в программе лояльности (VIP, есть карта лояльности, нет карты лояльности).

• order_id – ID заказа (2134, 2135, …).

• client_id – ID клиента (1, 2…).

• amount – cумма заказа в рублях (102, 1012…).

Таблица 7.3.Пример объединения данных

Что в этой таблице фактов хорошо нет id полей кроме двух заказов и - фото 30

Что в этой таблице фактов хорошо – нет id полей, кроме двух – заказов и клиентов, но это полезные поля, они, возможно, понадобятся, чтобы посмотреть более подробно какие-то заказы во внутренней учетной системе. Аналитик получил выборку данных в указанном выше виде, поместил ее в электронную таблицу, например Microsoft Excel или Google Sheets. Построил над этой таблицей сводную (pivot table). Приступим к ее анализу.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Роман с Data Science. Как монетизировать большие данные [litres]»

Представляем Вашему вниманию похожие книги на «Роман с Data Science. Как монетизировать большие данные [litres]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Роман с Data Science. Как монетизировать большие данные [litres]»

Обсуждение, отзывы о книге «Роман с Data Science. Как монетизировать большие данные [litres]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x