* Прошу прощения! Этот угол имеет обратный знак по отношению к использовавшемуся в гл. 9, § 4.
** Как правило, момент количества движения атомной системы весьма удобно измерять в единицах h . Тогда можно говорить, что частица со спином 1 / 2 обладает по отношению к любой оси моментом количества движения ± 1 / 2 . И вообще, что z -компонента момента количества движения есть т. Не приходится все время повторять h .
* Для большей строгости все эти рассуждения нужно было бы провести для малых поворотов e . Раз каждый угол j представляет собой сумму некоторого числа n таких поворотов, j = n e , то R ^ z ( j )= [ R z ( e )] n , и общее изменение фазы в n раз превосходит изменение для малого угла 8 и поэтому пропорционально j .
* Точнее, мы определим R ^ z ( j ) как поворот физической системы на - j вокруг оси z ; это то же самое, что повернуть систему координат на + j .
** Мы всегда вправе выбрать ось z вдоль направления поля при условии, конечно, что его направление не меняется и что больше полей нет.
* В других книгах вы можете встретить формулы с другими знаками; вероятнее всего, в них используются углы, определенные по-иному.
* Кстати, вы можете доказать, что Q ^ — это обязательно унитарный оператор, т. е. если он действует на | y >, приводя к | y >, умноженному на некоторое число, то это число должно иметь вид е i d , где d — вещественно. Это мелкое замечание, а доказательство основано на следующем наблюдении. Всякая операция наподобие отражения или поворота не приводит к потере каких-либо частиц, так что нормировки | y ' > и | y > должны совпадать; отличаться они вправе только на множитель с чисто вещественной фазой в показателе.
Литература: А. Р. Эдмондс, Угловые моменты в квантовой механике, в кн. «Деформация атомных ядер», ИЛ, 1958.
Глава 16
МОМЕНТ КОЛИЧЕСТВА ДВИЖЕНИЯ
§ 1. Электрическое дипольное излучение
§ 2. Рассеяние света
§ 3. Аннигиляция позитрония
§ 4. Матрица поворота для произвольного спина
§ 5. Измерения ядерного спина
§ 6. Сложение моментов количества движения
Добавление 1. Вывод матрицы поворота
Добавление 2. Сохранение четности при испускании фотона
§ 1. Электрическое дипольное излучение
В предыдущей главе мы развили представления о сохранении момента количества движения в квантовой механике и показали, как ими можно воспользоваться для предсказания углового распределения протонов при распаде L 0-частицы. Теперь мы хотим добавить еще несколько иллюстраций тех следствий, которые вытекают из сохранения момента количества движения в атомных системах. Первым примером послужит излучение света атомом. Сохранение момента количества движения (наряду с другими обстоятельствами) определит поляризацию и угловое распределение испускаемых фотонов.
Пусть имеется атом в возбужденном состоянии с определенным моментом количества движения, скажем со спином, равным 1; он, излучая фотон, переходит к состоянию с моментом нуль при более низкой энергии. Задача в том, чтобы представить угловое распределение и поляризацию фотонов. (Она очень похожа на задачу о распаде L 0-частицы, но только теперь спин равен не 1/ 2, a 1.) Раз у возбужденного состояния спин равен единице, то для z-компоненты момента имеются три возможности. Значение т может быть или +1, или 0, или -1. Возьмем для примера m =+1. (Если мы разберемся в этом примере, то справимся и с другими.) Предположим, что момент количества движения атома направлен по оси +z (фиг. 16.1, а), и спросим, какова амплитуда того, что он излучит вверх по оси гправополяризованный по кругу свет, так что в результате его момент станет равным нулю (фиг. 16.1, б).
Читать дальше