L= rX p .(18.72)
Одна из забавных сторон манипуляций с операторами заключается в том, что многие классические уравнения переносятся в квантовомеханическую форму. А какие нет? Ведь должны же быть такие, которые не получаются, потому что если бы все повторялось, то в квантовой механике не было бы ничего отличного от классической, не было бы новой физики.
Вот вам уравнение, которое отличается. В классической физике
хр х -р x х= 0 .
А что в квантовой механике?

Подсчитаем это в x -представлении. Чтобы было видно, что мы делаем, приложим это к некоторой волновой функции y( x ) . Пишем

или

Вспомним теперь, что производные действуют на всё, что справа. Получаем

Ответ не нуль. Вся операция попросту равнозначна умножению на - h / i :

Если бы постоянная Планка была равна нулю, то квантовые и классические результаты стали бы одинаковыми и не пришлось бы нам учить никакой квантовой механики!
Отметим, что если два каких-то оператора А и В, взятые в сочетании

не дают нуля, то мы говорим, что «операторы не перестановочны», или «операторы не коммутируют». А уравнение наподобие (18.74) называется «перестановочным соотношением». Вы можете сами убедиться, что перестановочное соотношение для p х и у (или коммутатор р х и у) имеет вид

Существует еще одно очень важное перестановочное соотношение. Оно относится к моментам количества движения. Вид его таков:

Если вы хотите приобрести некоторый опыт работы с операторами x ^ и p ^, попробуйте доказать эту формулу сами.
Интересно заметить, что операторы, которые не коммутируют, можно встретить и в классической физике. Мы с этим уже сталкивались, когда говорили о поворотах в пространстве. Если вы повернете что-нибудь, например книжку, сперва на 90° вокруг оси х, а затем на 90° вокруг оси у, то получится совсем не то, что было бы, если бы сначала вы повернули ее на 90° вокруг оси у, а после на 90° вокруг оси х. Именно это свойство пространства и ответственно за уравнение (18.75).
§ 7. Изменение средних со временем
Теперь мы познакомим вас с еще одной интересной вещью: вы узнаете, как средние изменяются во времени. Представим на минуту, что у нас есть оператор А ^ , в который время явным образом не входит. Имеется в виду такой оператор, как х ^ или р ^ .
[А исключаются, скажем, такие вещи, как оператор внешнего потенциала V ( x , t ) , меняющийся во времени.] Теперь представим, что мы вычислили < A > срв некотором состоянии |y>, т. е.

Как < A > србудет зависеть от времени? Но почему оно вообще может зависеть от времени? Ну, во-первых, может случиться, что оператор сам явно зависит от времени, например, если он был связан с переменным потенциалом типа V ( x , t ) . Но даже если оператор от t не зависит, например оператор А ^ =х ^ , то соответствующее среднее может зависеть от времени. Ведь среднее положение частицы может перемещаться. Но как может такое движение получиться из (18.76), если А от времени не зависит? Дело в том, что во времени может меняться само состояние |y>. Для нестационарных состояний мы часто даже явно отмечали зависимость от времени, записывая их как |y( t )>. Теперь мы хотим показать, что скорость изменения < A > ср
Читать дальше