
Значит, из (10.44) амплитуда для спина 1 окажется равной

Теперь вам понятно, как мы будем действовать дальше.
Но хорошо бы провести выкладки в общем случае для всех состояний. Если протон и электрон в нашей системе (системе S) оба смотрят вверх, то амплитуды того, что в другой системе (системе Т ) они будут в одном из четырех возможных состояний,
равны

Затем мы можем записать состояние |+ +> в виде следующей линейной комбинации:

Но теперь мы замечаем, что |+ '+'> — это состояние |+ Т > , что {| + '-'>+|-'+'>} — это как раз Ц2, умноженный на состояние |0 T > [см. (10.41)], и что | - '-'> = |- Т > . Иными словами, (10.47) переписывается в виде

Точно так же легко показать, что

С |0 S > дело обстоит чуть посложнее, потому что

Но каждое из состояний | + - > и | - +> можно выразить через «штрихованные» состояния и подставить в сумму:

Умножая сумму (10.50) и (10.51) на 1/Ц2, получаем

Отсюда следует

Теперь у нас есть все необходимые амплитуды. Коэффициенты в (10.48), (10.49) и (10.52) —это матричные элементы
< j Т | iS > . Сведем их в одну матрицу:

Мы выразили преобразование спина 1 через амплитуды а, b , с и d преобразования спина 1/ 2.
Если, например, система Т повернута по отношению к S на угол а вокруг оси у (см. фиг. 3.6, стр. 64), то амплитуды в табл. 10.4—это просто матричные элементы R y (a) в табл. 4.2:

Подставив их в (10.53), получим формулы (3.38), которые приведены на стр. 80 без доказательства.
Но что же случилось с состоянием | IV )?! Это система со спином нуль; значит, у нее есть только одно состояние — оно во всех системах координат одно и то же. Можно проверить, что все так и выходит, если взять разность (10.50) и (10.51); получим

Но (ad-bc) — это определитель матрицы для спина 1/ 2, он просто равен единице. Получается
| IV '>=| IV > при любой относительной ориентации двух систем координат.
* Тем, кто перескочил через гл. 4, придется пропустить и этот параграф.
* Вспомните, что классически U = - m · B, так что энергия наименьшая, когда момент направлен по полю. Для положительно заряженных частиц магнитный момент параллелен спину, для отрицательных — наоборот. Значит, в (10.27) m р — число положительное, а ( m е — отрицательное.
*Crampton, Kleppner, Ramsey, Physical Review Letters, 11, 338 (1963).
* В действительности состоянием является

но, как обычно, мы отождествим состояния с постоянными векторами, которые при t=0 совпадают с настоящими векторами.
Читать дальше