В гл. 42, § 5 (вып. 4) мы говорили о связи между поглощением света, вынужденным испусканием и самопроизвольным испусканием в терминах введенных Эйнштейном коэффициентов А и В. Здесь наконец-то в наших руках появляется квантовомеханическая процедура для подсчета этих коэффициентов. То, что мы обозначили Р ( I ® II ) для нашей аммиачной двухуровневой молекулы, в точности соответствует коэффициенту поглощения B nm в эйнштейновской теории излучения. Из-за сложности молекулы аммиака — слишком трудной для расчета — нам пришлось взять матричный элемент < II | H | I > в виде m x и говорить, что m извлекается из опыта. Для более простых атомных систем величину m mn , отвечающую к произвольному переходу, можно подсчитать, исходя из определения

где Н mn — это матричный элемент гамильтониана, учитывающего влияние слабого электрического поля. Величина m mn , вычисленная таким способом, называется электрическим дипольным матричным элементом, Квантовомеханическая теория поглощения и испускания света сводится тем самым к расчету этих матричных элементов для тех или иных атомных систем.
Итак, изучение простых систем с двумя состояниями (двухуровневых) привело нас к пониманию общей проблемы поглощения и испускания света.
* Теперь мы опять будем писать | I > и | II > вместо | y I > и | y II > . Вы должны вспомнить, что настоящие состояния | y I > и | y II > суть энергетические базисные состояния, умноженные на соответствующий экспоненциальный множитель.
* Например, как легко убедиться, одно из допустимых решений имеет вид

* Очень жаль, но нам придется ввести новое обозначение. Раз буквы р и Е заняты у нас импульсом и энергией, то мы поостережемся опять обозначать ими дипольный момент и электрическое поле. Напомним, что в этом параграфе m означает электрический дипольный момент.
* В дальнейшем полезно (и читая, и произнося вслух) отличать арабские 1 и 2 и римские I и II . Мы считаем, что удобно для арабских, цифр резервировать названия «один» и «два», а I и II читать как «первый», «второй».
Глава 8
ДРУГИЕ СИСТЕМЫ С ДВУМЯ состояниями
§ 1. Молекулярный ион водорода
§ 2. Ядерные силы
§ 3. Молекула водорода
§ 4.Молекула бензола
§ 5. Красители
§ 6.Гамильтониан частицы со спином 1/2 в магнитном поле
§ 7.Вращающийся электрон в магнитном поле
§ 1. Молекулярный ион водорода
В предыдущей главе мы обсудили некоторые свойства молекулы аммиака в предположении, что это система о двух состояниях (или двухуровневая система). На самом деле, конечно, это не так — у нее есть множество состояний: вращения, колебания, перемещения и т. д., но в каждом из этих состояний движения следует говорить о паре внутренних состояний из-за того, что атом азота может быть переброшен с одной стороны плоскости трех атомов водорода на другую. Сейчас мы рассмотрим другие примеры систем, которые в том или ином приближении можно будет считать системами с двумя состояниями. Многое здесь будет приближенным, потому что всегда имеется множество других состояний, и в более точном анализе их следовало бы учитывать. Но в каждом из этих примеров мы окажемся в силах очень многое понять, рассуждая только о двух состояниях.
Раз мы будем иметь дело только с двухуровневыми системами, то нужный нам гамильтониан будет выглядеть так же, как и в предыдущей главе. Когда гамильтониан не зависит от времени, то известно, что имеются два стационарных состояния с определенными (и обычно разными) энергиями. В общем случае, однако, мы будем начинать наш анализ с выбора базисных состояний (не обязательно этих стационарных состояний), таких, которые, скажем, имеют другой простой физический смысл. Тогда стационарные состояния системы будут представлены линейной комбинацией этих базисных состояний.
Читать дальше