Вы видите, что это та же игра, в какую мы играли в последних двух главах. Если пренебречь способностью электрона перескакивать туда и обратно, то два состояния будут иметь в точности одинаковую энергию. Эта энергия, однако, расщепляется на два энергетических уровня из-за того, что электрон может переходить туда и назад, и чем больше вероятность перехода, тем больше расщепление. Стало быть, два уровня энергии системы равны Е 0 + А и Е 0- А, и состояния, у которых такие энергии, даются уравнениями (8.7).
Из нашего решения мы видим, что если протон и водородный ион как-то расположить близко один к другому, то электрон не останется подле одного протона, а будет перескакивать от протона к протону и обратно. Если вначале он был близ одного из протонов, то затем он начнет колебаться туда и назад между состояниями | 1 > и | 2 >, давая решение, меняющееся во времени. Чтобы получить решение, отвечающее самой низкой энергии (которое не меняется со временем), необходимо, чтобы вначале система обладала одинаковыми амплитудами пребывания электрона возле каждого из протонов. Кстати, вспомните, что электронов отнюдь не два; мы совсем не утверждаем, что вокруг каждого протона имеется электрон. Имеется только один электрон, и это он имеет одинаковую амплитуду (1/Ц2 по величине) быть в том или ином положении.
Дальше, для электрона, который находится близ одного протона, амплитуда А оказаться близ другого зависит от расстояния между протонами. Чем они ближе один к другому, тем больше амплитуда. Вы помните, что в гл. 5 мы говорили об амплитуде «проникновения» электрона «сквозь барьер», на что по классическим канонам он не способен. Здесь то же самое положение дел. Амплитуда того, что электрон переберется к другому протону, спадает с расстоянием примерно по экспоненте (для больших расстояний). Раз вероятность, а следовательно, и значение А при сближении протонов возрастают, то возрастает и расстояние между уровнями энергии. Если система находится в состоянии | I >, то энергия Е 0 +А с уменьшением расстояния растет так, что эти квантовомеханические эффекты приводят к силе отталкивания, стремящейся развести протоны. Если же система пребывает в состоянии | II >, то полная энергия при сближении протонов убывает; существует сила притяжения, подтягивающая протоны один к другому. Эти энергии меняются с расстоянием между протонами примерно так, как показано на фиг. 8.2.

Фиг . 8.2. Энергии двух стационарных состояний иона h + 2 как функция расстояния между двумя протонами.
Тем самым у нас появляется квантовомеханическое объяснение силы связи, скрепляющей
ион H + 2.
Однако мы позабыли об одной вещи. В дополнение к только что описанной силе имеется также электростатическая сила взаимного отталкивания двух протонов. Когда оба протона очень удалены друг от друга (как на фиг. 8.1), то «голый» протон видит перед собой только нейтральный атом, так что электростатической силой можно пренебречь. При очень тесных сближениях, однако, «голый» протон оказывается порой «внутри» электронного распределения, т. е. в среднем он ближе к протону, чем к электрону. Появляется некоторая добавочная электростатическая энергия, которая, конечно, положительна. Эта энергия — она тоже зависит от расстояния — должна быть включена в Е 0 . Значит, за Е 0 мы должны принять нечто похожее на штриховую кривую на фиг. 8.2; она быстро подымается на расстояниях, меньших, чем радиус атома водорода. Энергию переворота А надо вычесть и прибавить к этому Е 0 . Если это сделать, то энергии Е I и Е II будут меняться с межпротонным расстоянием D , как показано на фиг. 8.3.

Фиг. 8.3. Уровни энергии иона H + 2 как функция межпротонного расстояния D ( E H = 13,6 эв).
[На рисунке мы воспроизвели результаты более детальных выкладок. Межпротонное расстояние дано в ангстремах (1Е=10 - 8 см), а избыток энергии над протоном плюс водородным ионом дается в единицах энергии связи атома водорода, так называемых «ридбергах» (13,6 эв ).] Мы видим, что состояние | II > имеет точку минимума энергии — равновесную конфигурацию (условие наинизшей энергии) для иона Н + 2. Энергия в этой точке ниже, чем энергии отдельно протона и отдельно водородного иона, так что система связана. Отдельный электрон действует так, что скрепляет протоны. Химик назвал бы это «одноэлектронной связью».
Читать дальше