
Наибольшая величина z-компоненты равна произведению j на h , следующая на h меньше и т. д. до — jh. Число j называется «спином системы». (Некоторые называют его «квантовым числом полного момента количества движения», а мы будем называть его попросту «спином».)
Вас, вероятно, волнует, не будет ли все сказанное нами верно только для некоторой особой оси z? Это не так. Для системы со спином j компонента момента количества движения по любой оси может принимать только одно из значений (34.23). Хотя все это выглядит довольно невероятно, я еще раз прошу вас мне поверить. Позднее мы еще вернемся к этому пункту и обсудим его. Вам, наверно, будет приятно услышать, что z-компонента пробегает набор значений от некоторого числа до минус то же самое число, так что нам, к счастью, не приходится гадать, какое же направление оси z положительное. (Конечно, если бы я сказал, что он пробегает значения от +j до минус какое-то другое число, это было бы крайне подозрительно, ибо тогда мы были бы лишены возможности направить ось z в другую сторону.)
Но если z-компонента момента количества движения изменяется на целое число от +j до -j , то не должно ли само j тоже быть целым числом? Нет! Не совсем так, целым должно быть удвоенное j, т. е. 2j. Иначе говоря, целым должна быть лишь разность между +j и -j. Таким образом, спин j', вообще говоря, может быть либо целым, либо полуцелым в зависимости от того, будет ли 2/ нечетным или четным. Возьмем, к примеру, ядро типа лития, спин которого равен j= 3/ 2. При этом момент количества движения относительно оси z принимает в единицах h одно из следующих значений:

Так что если ядро находится в пустом пространстве в отсутствие внешних полей, то у него имеются четыре возможных состояния, каждое с одной и той же энергией. Для системы со спином 2 z-компонента момента количества движения принимает в единицах h только следующие значения:
2; 1; 0; -1; -2.
Если вы подсчитаете, сколько возможно состояний для данного спина j, то их получится (2j+1). Другими словами, если вы скажете мне, какова энергия системы и ее спин j , то число состояний с этой же энергией в точности будет равно (2j+1), причем каждое из них соответствует одной из различных величин z-компоненты момента количества движения.
Мне хотелось бы прибавить еще один факт. Если вы случайно выберете некоторый атом с известным j и измерите его s-компоненту момента количества движения, то сможете получить какое-то одно из возможных значений, причем каждое из них равновероятно. Любое состояние может характеризоваться только одним из возможных значений, но каждое из них столь же хорошо, как и любое другое. Каждое из них имеет в мире один и тот же вес (мы предполагаем, что никакой предварительной «сортировки» не было).
Кстати, этот факт имеет простой классический аналог. Представьте, что тот же самый вопрос вас интересует с классической точки зрения: какова вероятность какого-то определенного значения z-компоненты момента количества движения, если из набора систем, имеющих один и тот же момент количества движения, вы наугад выбрали одну? Ответ: любое из значений от максимального до минимального равновероятно (в чем вы можете легко убедиться сами). Этот классический результат соответствует равной вероятности любой из (2j+1) возможностей в квантовой механике.
Из того, что у нас было до сих пор, можно получить другое интересное и в каком-то смысле удивительное заключение. В некоторых классических расчетах в окончательном результате появлялась величина, равная квадрату момента количества движения J, другими словами, J· J. И вот оказывается, что правильную квантовомеханическую формулу можно угадать с помощью классических вычислений и следующего простого правила: замените J 2= J· Jна j(j+1)h 2. Этим правилом часто пользуются, и обычно оно дает верный результат, однако не всегда. Чтобы показать вам, почему это правило может хорошо работать, я приведу следующее рассуждение.
Скалярное произведение J· J можно записать как
Читать дальше