Feynmann - Feynmann 7

Здесь есть возможность читать онлайн «Feynmann - Feynmann 7» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 7: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 7»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 7 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 7», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если же мы учтем остальные пары граней куба, то нетрудно убедиться, что сила давления на единичный объем равна -С p . Если вдобавок есть еще и другие силы, наподобие силы тяжести, то давление при равновесии должно компенсироваться ими.

Разберем случай, когда такие дополнительные силы можно описать потенциальной энергией, наподобие силы тяжести. Обозначим через j потенциальную энергию единицы массы. (Для притяжения, например, j просто равно gz .) Сила, дейст­вующая на единичную массу, задаётся через потенциал j выражением -Сj, а если плотность жидкости равна r, то на единицу объема будет действовать сила -rСj. В состоянии равновесия эта действующая на единичный объем сила в сумме с силой давления должна давать нуль:

-Сp-rСj=0. (40.1)

Это и есть уравнение гидростатики. В общем случае оно не имеет решения. Если плотность изменяется в пространстве каким-то произвольным образом, то нет возможности уравновесить все силы и жидкость не может находиться в состоянии статиче­ского равновесия. В ней возникнут разные конвекционные потоки. Это видно прямо из уравнения, ибо член с давлением представляет чистый градиент, тогда как второй член из-за плотности r не может быть им. И только когда величина r по­стоянна, потенциальный член становится чистым градиентом.

Решение уравнения в этом случае имеет вид

р+rj=const.

Другая возможность, допускающая состояние равновесия,— это когда r зависит только от р. Однако на этом мы расста­немся с гидростатикой, ибо она не так интересна, как дви­жущаяся жидкость.

§ 2. Уравнение движения

Сначала обсудим движение жидкости с чисто абстрактной теоретической стороны, а затем рассмотрим некоторые частные примеры. Чтобы описать движение жидкости, мы должны задать в каждой точке ее некие свойства. Например, вода (бу­дем называть жидкость просто «водой») в разных местах движется с различными скоростями. Следовательно, чтобы определить характер потока, мы должны в каждой точке и в любой момент времени задать три компоненты скорости. Если нам удастся найти уравнения, определяющие скорость, то мы будем знать, как в любой момент движется жидкость. Но скорость — не единственная характеристика жидкости, которая меняется от точки к точке. Только что мы изучали изменение давления от точки к точке. А есть еще и другие пере­менные. От точки к точке может меняться также плотность. Вдобавок жидкость может быть проводником и переносить электрический ток, плотность которого jизменяется от точки к точке как по величине, так и по направлению. От точки к точке может меняться температура, магнитное поле и т. д. Так что число полей, необходимых для полного описания ситуа­ции, зависит от сложности задачи. Очень интересные явления возникают, когда доминирующую роль в определении поведе­ния жидкости играют токи и магнетизм. Эта наука носит назва­ние магнитогидродинамика. В настоящее время ей уделяется очень большое внимание. Но мы не собираемся рассматривать эти весьма сложные случаи, ибо имеется немало менее сложных, но столь же интересных явлений, и даже этот более элементар­ный уровень будет достаточно труден.

Возьмем случай, когда нет ни магнитного поля, ни прово­димости и нам, кроме того, не следует беспокоиться о темпера­турах, ибо мы предположим, что температура в любой точке единственным образом определяется плотностью и давлением. Фактически мы уменьшим сложность нашей работы, допустив, что плотность постоянна, т. е. что жидкость существенно не­сжижаема. Другими словами, мы предполагаем, что изменения давлений настолько малы, что производимыми ими изменениями плотности можно пренебречь. Если бы это было не так, то в дополнение к явлениям, рассмотренным здесь, необходимо было бы учитывать и другие явления, скажем распространение звуковых или ударных волн. Распространение звуковых и ударных волн мы уже в какой-то степени изучали, так что при нашем рассмотрении гидродинамики мы изолируемся от этих явлений, допустив, что приближенно плотность r посто­янная. Легко определить, когда такое предположение о по­стоянстве r будет хорошим. Если скорость потока гораздо меньше скорости звуковой волны, то нам не нужно заботиться об изменениях плотности. Тот факт, что вода ускользает от нас при попытке понять ее, не связан с этим приближе­нием постоянной плотности. Усложнения, которые все-таки позволили ей остаться непонятой, мы обсудим в следующей главе.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 7»

Представляем Вашему вниманию похожие книги на «Feynmann 7» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 7»

Обсуждение, отзывы о книге «Feynmann 7» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x