Feynmann - Feynmann 7

Здесь есть возможность читать онлайн «Feynmann - Feynmann 7» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 7: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 7»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 7 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 7», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если нас интересует только поле скоростей, то из наших уравнений можно исключить давление. Взяв ротор обеих частей уравнения (40.8) и вспомнив, что r — величина постоян­ная, а ротор любого градиента равен нулю, а также использо­вав уравнение (40.3), находим

Это уравнение вместе с уравнениями WСXv 4010 и Сv0 4011 - фото 449

Это уравнение вместе с уравнениями

W=СXv (40.10)

и

С·v=0 (40.11)

полностью описывают поле скоростей v. На языке матема­тики — если в некоторый момент мы знаем W ,то мы знаем ротор вектора скорости и, кроме того, знаем, что его дивер­генция равна нулю, так что в этих физических условиях у нас есть все необходимое для определения скорости v по­всюду. (Все это в точности напоминает нам знакомые условия в магнетизме, где С· B=0 и СX B= j/e 0c 2.) Таким образом, данная величина W определяет v точно так же, как jопреде­ляет В. Затем из известного значения v уравнение (40.9) даст нам скорость изменения W, откуда мы можем получить новую W в следующий момент. Используя снова уравнение (40.10), найдем новое значение v и т. д. Теперь вы видите, как в эти уравнения входит весь механизм, необходимый для вычисления потока. Заметьте, однако, что эта процедура дает только ско­рости, а всю информацию о давлении мы потеряли.

Отметим особое следствие нашего уравнения. Если в ка­кой-то момент времени t повсеместно W=0, то д W / д t тоже исче­зает, так что W всюду останется равной нулю и в момент t +Dt. Отсюда следует, что поток все время остается безвихре­вым. Если вначале поток не вращался, то он так никогда и не начнет вращаться. При этом уравнения, которые мы должны решать, таковы:

С·v=0, СXv=0.

Они в точности напоминают уравнения электростатики или магнитостатики в пустом пространстве. Позднее мы вернемся к ним и рассмотрим некоторые частные задачи.

§ 3. Стационарный поток; теорема Бернулли

Вернемся к уравнениям движения (40.8), но ограничимся теперь приближением «стационарного» потока. Под стационарным потоком я подразумеваю поток, скорость которого в любом месте жидкости никогда не изменяется. Жидкость в любой точке постоянно заменяется новой жидкостью, движущейся в точности таким же образом. Кар­тина скоростей всегда выглядит одинаково, т. е. v представ­ляет статическое векторное поле. Как в магнитостатике мы рисовали силовые линии, так и здесь можно начертить линии, которые всегда касательны к скорости жидкости (фиг. 40.5).

Фиг 405 Линии тока стационарного потока Эти линии называются линиями - фото 450

Фиг. 40.5. Линии тока ста­ционарного потока.

Эти линии называются «линиями тока». Для стационарного потока они действительно представляют реальные пути частиц жидкости. (В нестационарном потоке картина линий тока меняется со временем, однако в любой момент времени она не представляет пути частиц жидкости.)

Стационарность потока вовсе не означает, что ничего не происходит — частички жидкости движутся и изменяют свои скорости. Это означает только то, что д v / д t =0. Если теперь мы скалярно умножим уравнение движения на v, то слагаемое v·(WXv) выпадет и у нас останется только

Согласно этому уравнению при малых перемещениях в направлении скорости - фото 451

Согласно этому уравнению, при малых перемещениях в направ­лении скорости жидкости величина внутри скобок не изме­няется. В стационарном потоке все перемещения направлены вдоль линий тока; поэтому уравнение (40.12) говорит, что для всех точек вдоль линии тока

Это и есть теорема Бернулли Постоянная вообще говоря для различных линий - фото 452

Это и есть теорема Бернулли. Постоянная, вообще говоря, для различных линий тока может быть разной; мы знаем только, что левая часть уравнения (40.13) постоянна всюду вдоль данной линии тока. Заметьте, кстати, что если стационарный поток безвихревой, т. е. если для него W=0, то уравнение движения (40.8) дает нам соотношение

так что Оно в точности напоминает уравнение 4013 за исключением - фото 453

так что

Оно в точности напоминает уравнение 4013 за исключением того что теперь - фото 454

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 7»

Представляем Вашему вниманию похожие книги на «Feynmann 7» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 7»

Обсуждение, отзывы о книге «Feynmann 7» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x