§ 2. Конденсатор на больших частотах
§ 3. Резонансная полость
§ 4. Собственные колебания полости
§ 5. Полости и резонансные контуры
Повторить; гл. 2 . (вып. 2) «Резонанс»; гл. 49 (вып. 4 )
«Собственные колебания».
§ 1. Реальные элементы цепи

Если посмотреть на любую цепь, состоящую из идеальных импедансов и генераторов, со стороны какой-нибудь пары клемм, то при данной частоте она будет эквивалентна генератору $, последовательно соединенному с импедансом z. Если приложить к этим клеммам напряжение V и вычислить из уравнений силу тока, то между током и напряжением должна получиться линейная зависимость. Поскольку все уравнения линейны, то и I должно зависеть от V линейно и только линейно. А самое общее линейное выражение можно записать в виде
(23.1)
Вообще-то и z и e могут как-то очень сложно зависеть от частоты w. Однако соотношение (23.1) — это то соотношение, которое получилось бы, если бы за клеммами находился просто генератор e(w), последовательно соединенный с импедансом z(w).
Можно поставить и обратный вопрос: имеется какое-то электромагнитное устройство с двумя полюсами (выводами) и нам известна связь между I и V, т. е. известны e и z как функции частоты; можно ли всегда найти такую комбинацию идеальных элементов, которая даст эквивалентный внутренний импеданс z? Ответ на это таков: для любой разумной, т. е. физически осмысленной функции z(w), действительно возможно построить с любой степенью точности модель с помощью контура, составленного из конечного числа идеальных элементов. Мы не собираемся изучать общую задачу, а только посмотрим, основываясь на физических соображениях, чего можно ожидать в отдельных случаях.

Фиг. 23.1. Эквивалентная схема реального сопротивления.
Известно, что ток, протекающий через реальное сопротивление, создает магнитное поле. Значит, каждое реальное сопротивление должно обладать и некоторой индуктивностью. Далее, если к сопротивлению приложена некоторая разность потенциалов, то на его концах должны возникнуть заряды, создающие нужные электрические поля. При изменении напряжения пропорционально меняется и заряд, так что у сопротивления имеется и какая-то емкость. Следует ожидать, что эквивалентная схема реального сопротивления должна иметь такой вид, как на фиг. 23.1. Если сопротивление хорошее, то его так называемые «паразитические элементы» L и С малы, так что при тех частотах, для которых оно предназначено, wL много меньше R , а l/wC — много больше R . Поэтому «паразитическими» элементами можно пренебречь. Когда же частота повышается, то не исключено, что значение этих элементов возрастет и сопротивление станет похожим на резонансный контур.
Реальная индуктивность также не совпадает с идеальной, импеданс которой равен iw L . У реальной проволочной катушки бывает какое-то сопротивление, и при низких частотах она фактически эквивалентна индуктивности, последовательно соединенной с сопротивлением (фиг. 23.2,а). Вы можете подумать, что в реальной катушке сопротивление и индуктивность объединены, что сопротивление распределено вдоль всего провода и перемешано с его индуктивностью.

Фиг. 23.2. Эквивалентная схема реальной индуктивности на малых частотах.

Фиг. 23.3. Эквивалентная схема реальной индуктивности на больших частотах.
Может быть, надо пользоваться контуром, смахивающим скорее на фиг. 23.2,6, где последовательно расставлено несколько маленьких R и L? Однако общий
импеданс такого контура просто равен SR+SiwL, а это то же самое, что дает более простая диаграмма, изображенная на фиг. 23.2, а.
Когда же частота повышается, то уже нельзя представлять реальную катушку в виде индуктивности плюс сопротивление. Начинают играть роль заряды, которые возникают на проводах, чтобы создать напряжение. Дело выглядит так, как будто между витками провода нанизаны маленькие конденсаторчики (фиг. 23.3, а). Можно попробовать приближенно представить реальную катушку в виде схемы фиг. 23.3, б. На низких частотах эту схему очень хорошо имитирует более простая (фиг. 23.3, в); это опять тот же резонансный контур, который давал нам высокочастотную модель сопротивления. Однако для более высоких частот более сложный контур фиг. 23.3, б подходит лучше. Так что чем точнее вы хотите представить истинный импеданс реальной физической индуктивности, тем больше надо взять идеальных элементов для построения искусственной модели.
Читать дальше