А верен ли этот закон и на еще меньших расстояниях? В ядерной физике измерения показали, что на типично ядерных расстояниях (порядка 10 -13 см) существуют электростатические силы и что меняются они все еще как обратные квадраты расстояний. Одно из свидетельств в пользу этого мы разберем в следующих главах. Мы уверены, таким образом, что закон Кулона еще выполняется и на расстояниях около 10 -13 см.
А что можно сказать о расстоянии 10 -14 см! Этот интервал исследовали, бомбардируя протоны очень энергичными электронами и следя за тем, как они рассеиваются. Сегодняшние данные указывают на то, что на этих расстояниях закон терпит крах. Электрические силы на расстояниях меньше 10 -14 см оказываются чуть ли не в 10 раз слабее. Этому есть два объяснения. То ли закон Кулона на таких маленьких расстояниях не действует, то ли эти тела (электроны и протоны) не являются точечными зарядами. Возможно, что один из них как-то размазан (а может, и оба). Большинство физиков предпочитают думать, что размазан заряд протона. Мы знаем, что протоны сильно взаимодействуют с мезонами. Это означает, что протон время от времени существует в виде нейтрона с p +- мезоном вокруг. Такое расположение в среднем выглядело бы как небольшой шарик положительного заряда. А мы знаем, что нельзя считать поле шара зарядов меняющимся вплоть до самого центра по закону 1/r 2. Вполне вероятно, что заряд протона размазан, но теория пионов еще очень несовершенна, и не исключено, что и закон Кулона на малых расстояниях отказывает. Вопрос пока остается открытым.
Еще один каверзный вопрос: если закон обратных квадратов верен и на расстояниях порядка 1м и на расстояниях порядка 10 -10 м, то остается ли тем же коэффициент 1/4pe 0? Да,— гласит ответ,— по крайней мере, с точностью до 15 миллионных.
Вернемся теперь к важному вопросу, от которого мы отмахнулись, когда говорили об опытном подтверждении закона Гаусса.
Вас могло удивить, как в опыте Максвелла и Плимптона— Лафтона удалось достичь такой точности. Ведь вряд ли сферический проводник мог быть идеальной сферой. Достичь точности в одну миллиардную — это прекрасно; но резонно спросить: как могли они столь точно изготовить сферу? Наверняка на сфере были небольшие неправильности, как на всякой реальной сфере, и не могли ли эти нерегулярности создать какое-то поле внутри? Мы хотим показать теперь, что в идеальной сфере вовсе нет необходимости. Оказывается можно доказать, что внутри замкнутой проводящей оболочки любой формы поля не бывает. Иными словами, опыты зависели от 1/r 2, но никак не были связаны со сферической формой поверхности (разве что со сферой легче было бы рассчитать поле, если бы закон Кулона оказался ошибочным). Итак, мы снова возвращаемся к этому вопросу. Для решения его нам нужно знать кое-какие свойства проводников электричества.
§ 9. Поля проводника
Проводник электричества — это твердое тело, в котором есть много «свободных» электронов. Электроны могут двигаться в веществе свободно, но не могут покидать поверхности. В металле бывает так много свободных электронов, что всякое электрическое поле приводит многие из них в движение. И либо возникший таким образом ток электронов должен непрерывно поддерживать свое существование за счет внешних источников энергии, либо движение электронов прекращается, как только они разрядят источники, вызвавшие ноле вначале. В условиях «электростатики» мы не рассматриваем непрерывных источников тока (о них мы будем говорить в магнитостатике), так что электроны движутся только до тех пор, пока не расположатся так, что повсюду внутри проводника создастся нулевое электрическое поле. (Как правило, это происходит в малые доли секунды.) Если бы осталось внутри хоть какое-нибудь поле, оно бы вынудило двигаться еще какие-то электроны; возможно только такое электростатическое решение, когда поле всюду внутри равно нулю.
Теперь рассмотрим внутренность заряженного проводящего тела. (Мы имеем в виду внутреннюю часть самого металла.) Так как металл — проводник, то внутреннее поле должно быть нулем, а значит, и градиент потенциала j равен нулю. Это значит, что j от точки к точке не меняется. Любой проводник — это эквипотенциальная область, и его поверхность — эквипотенциальна. Раз в проводящем материале электрическое поле повсюду равно нулю, то и дивергенция Е тоже равна нулю, и по закону Гаусса плотность заряда во внутренней части проводника обращается в нуль.
Читать дальше