Feynmann - Feynmann 5a

Здесь есть возможность читать онлайн «Feynmann - Feynmann 5a» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 5a: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 5a»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 5a — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 5a», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Фиг. 5.5. Цилиндрическая гауссо­ва поверхность, коаксиальная за­ряженной прямой.

1 — гауссова поверхность; 2 — заря­женная прямая.

Может быть это нелегко доказать но это верно если пространство симметрично - фото 8

(Может быть, это нелегко доказать, но это верно, если пространство симметрично, а мы считаем, что это так.) Применить закон Гаусса можно следующим образом. Вооб­разим себе поверхность, имеющую форму цилиндра, ось ко­торого совпадает с нашей прямой (фиг. 5.5). Согласно закону Гаусса, весь поток Е из этой поверхности равен заряду внутри нее, деленному на e 0. Раз поле считается нормальным к поверх­ности, то его нормальная составляющая — это величина векто­ра поля. Обозначим ее Е. Пусть радиус цилиндра будет r, а длина его для удобства выбрана равной единице. Поток сквозь цилиндрическую поверхность равен произведению Е на площадь поверхности, т. е. на 2pr. Поток через торцы равен нулю, потому что поле касательно к ним. Весь заряд внутри нашей поверх­ности равен как раз l, потому что длина оси цилиндра равна единице. Тогда закон Гаусса дает

(5.2)

Электрическое поле заряженной прямой обратно пропорцио­нально первой степени расстояния от прямой.

§ 6. Заряженная плоскость; пара плоскостей

В качестве другого примера рассчитаем поле однородно заряженного плоского листа. Предположим, что лист имеет бесконечную протяженность и заряд на единицу площади равен а. Сразу приходит в голову следующее соображение: из симмет­рии следует, что поле направлено всюду поперек плоскости, и если не существует поля от всех прочих зарядов в мире, то поля по обе стороны плоскости должны совпадать (по величине). На этот раз за гауссову поверхность мы примем прямоугольный ящик, пересекающий нашу плоскость (фиг. 5.6). Каждая из граней, параллельных плоскости, имеет площадь А. Поле нор­мально к этим двум граням и параллельно остальным четырем. Суммарный поток равен Е, умноженному на площадь первой грани, плюс Е, умноженному на площадь противоположной грани; от остальных граней никаких слагаемых

Feynmann 5a - изображение 9

не войдет. За­ряд внутри ящика равен s А. Уравнивая поток с зарядом, на­пишем

Feynmann 5a - изображение 10

откуда

(5.3)

Простой, но важный результат.

Фиг 56 Электрическое поле возле однородно заряженной плоскости найденное - фото 11

Фиг. 5.6. Электрическое поле во­зле однородно заряженной плоско­сти, найденное с помощью теоремы Гаусса, применяемой к воображае­мому ящику.

1 — однородно заряженная плоскость;

2 — гауссова поверхность.

Вы помните, может быть, что тот же результат был получен в первых главах интегрирова­нием по всей плоскости. Закон Гаусса дает ответ намного бы­стрее (хотя он не так широко применим, как прежний метод).

Подчеркнем, что этот резуль­тат относится только к полю,

созданному зарядами, размещенными на плоскости. Если по соседству есть другие заряды, общее поле близ плоскости бы­ло бы суммой (5.3) и поля прочих зарядов. Закон Гаусса тогда только гарантировал бы, что

Feynmann 5a - изображение 12

(5.4)

где E 1 и Е 2 поля, направленные на каждой стороне плоско­сти наружу от нее.

Задача о двух параллельных плоскостях с равными и про­тивоположными плотностями зарядов +s и -s решается тоже просто, если только снова предположить, что внешний мир абсолютно симметричен. Составите ли вы суперпозицию двух ре­шений для отдельных плоскостей или построите гауссов ящик, охватывающий обе плоскости, в обоих случаях легко видеть, что поле снаружи плоскостей равно нулю (фиг. 5.7, а). Но, зак­лючив в ящик только одну или только другую поверхность, как показано на фиг. 5.7, б или в, мы легко обнаружим, что поле между плоскостями должно быть вдвое больше поля отдельной плоскости.

Фиг 57 Поле между двумя заряженными листами равно se 0 Итог таков - фото 13

Фиг . 5.7. Поле между двумя за­ряженными листами равно s/e 0.

Итог таков 55 Е снаружи 0 56 7 Однородно заряженный шар - фото 14

Итог таков:

(5.5)

Е (снаружи) =0. (5.6)

§ 7. Однородно заряженный шар; заряженная сфера

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 5a»

Представляем Вашему вниманию похожие книги на «Feynmann 5a» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 5a»

Обсуждение, отзывы о книге «Feynmann 5a» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x