В гл. 4 мы уже применяли закон Гаусса, когда должны были найти поле вне однородно заряженной шаровой области. Тот же метод может дать нам и поле в точках внутри шара. Этот расчет, например, может быть использован для получения хорошего приближения к полю внутри атомного ядра. Вопреки тому, что протоны в ядре взаимно отталкиваются, они из-за сильного ядерного притяжения распределены по всему ядру почти однородно.
Пусть у нас имеется сфера радиуса R , однородно наполненная зарядами. Пусть заряд в единице объема равен р. Снова, используя соображения симметрии, можно предположить, что поле радиально и в точках, равноудаленных от центра, по величине одинаково.
Фиг. 5.8. Закон Гаусса можно применить для определения поля внутри однородно заряженного шара.

Чтоб определить поле в точке на расстоянии r от центра, представим сферическую гауссову поверхность радиуса r (r

Заряд внутри нее равен внутреннему объему, умноженному на r, т. е.


Применяя закон Гаусса, получаем величину поля
(5.7)
Вы видите, что при r = R эта формула дает правильный результат. Электрическое поле пропорционально расстоянию от центра и направлено по радиусу наружу.
Аргументы, которые мы только что приводили для однородно заряженного шара, можно применить и к заряженной сфере. Опять предполагая радиальность и сферическую симметрию поля, из закона Гаусса немедленно получаем, что поле вне сферы во всем подобно полю точечного заряда, поле же внутри сферы — нуль (если мы проведем гауссову поверхность внутри сферы, то внутри нее зарядов не окажется).
§ 8. Точен ли закон Кулона?

Если мы вглядимся чуть пристальнее в то, как поле внутри сферы оказывается нулевым, то лучше поймем, почему закон Гаусса обязан своим происхождением закону Кулона, т. е. точной зависимости силы от второй степени расстояния. Возьмем произвольную точку Р внутри однородно заряженной сферической поверхности.
Фиг. 5.9. Во всякой точке Р внутри заряженной сферической оболочки поле равно нулю.

Представим узкий конус, который начинается в точке Р и тянется до поверхности сферы, вырезая там небольшой сферический участок Da t(фиг. 5.9). В точности симметричный конус по другую сторону вершины вырежет на поверхности площадь Dа 2. Если расстояния от Р до этих двух элементов площади равны r 1и r 2, то площади находятся в отношении
(Вы можете доказать это для любой точки шара с помощью геометрии.)
Если поверхность сферы заряжена равномерно, то заряд D q на каждом элементе поверхности пропорционален его площади


Тогда закон Кулона утверждает, что величины полей, создаваемых в Р этими двумя элементами поверхности, находятся в отношении
Поля в точности взаимно уничтожаются. Таким способом можно разбить на пары всю сферу. Значит, все поле в точке Р равно нулю. Но вы видите, что этого не было бы, окажись показатель степени r в законе Кулона не равным в точности двойке.
Справедливость закона Гаусса зависит от закона обратных квадратов Кулона. Если бы закон силы не подчинялся в точности зависимости 1/r 2, то поле внутри однородно заряженной сферы не было бы в точности равно нулю. Например, если бы поле менялось быстрее (скажем, как 1/r 3), то часть сферы, которая ближе к точке Р, создала бы в точке Р более сильное поле, чем дальняя часть. Получилось бы (для положительного поверхностного заряда) радиальное поле, направленное к центру. Эти заключения подсказывают нам элегантный путь проверки точности выполнения закона обратных квадратов. Для этого нужно только узнать, в точности ли поле внутри однородно заряженной сферы равно нулю.
Читать дальше