
равен нулю, так как там Е = 0. Так что мы бы имели
Но криволинейный интеграл от Е по любому замкнутому контуру в электростатическом поле всегда равен нулю. Значит, внутри пустой полости не может быть никаких полей, равно как не может быть никаких зарядов на внутренней поверхности.
Заметьте, что мы все время подчеркивали, что полость пуста. Если поместить какие-то заряды в фиксированных местах полости (скажем, на изоляторе или на небольшом проводнике, изолированном от основного), то внутри полости могут быть поля. Но тогда она уже не будет «пустой».
Мы показали, что если полость целиком окружена проводником, то никакое статическое распределение зарядов снаружи никогда не создаст поля внутри. Это объясняет принцип «защиты» электрического оборудования, которое помещается в металлическую коробку. К тем же рассуждениям можно прибегнуть, если нужно показать, что никакое статическое распределение зарядов внутри замкнутого сплошного проводника не может создать поля вне его. Защита действует в обе стороны! В электростатике (но не в изменяющихся полях) поля по обе стороны сплошной проводящей оболочки полностью не зависят одно от другого.
Теперь вы понимаете, почему удалось проверить закон Кулона с такой точностью. Форма полой оболочки не имела значения. Она вовсе не должна была быть круглой, она могла быть и кубом! Если закон Гаусса точен, то поле внутри всегда равно нулю. Вы понимаете теперь, почему вполне безопасно сидеть внутри высоковольтного генератора Ван-де-Граафа в миллион вольт, не боясь, что вас ударит ток, — Вас охраняет сам Гаусс!
Глава 6
ЭЛЕКТРИЧЕСКОЕ ПОЛЕ В РАЗНЫХ ФИЗИЧЕСКИХ УСЛОВИЯХ
§1.Уравнения электростатического потенциала
§2.Электрический диполь
§3.3амечания о векторных уравнениях
§4.Дипольный потенциал как градиент
§5.Дипольное приближение для произвольного распределения
§6.Поля заряженных проводников
§7. Метод изображений
§8.Точечный заряд у проводящей плоскости
§9.Точечный заряд у проводящей сферы
§10.Конденеаторы; параллельные пластины
§11.Пробой при высоком напряжении
§12.Ионный микроскоп
Повторить: гл. 2 3 (вып. 2) «Резонанс»
§ 1. Уравнения электростатического потенциала
В этой главе мы расскажем о поведении электрического поля в тех или иных обстоятельствах. Вы познакомитесь с тем, как ведет себя электрическое поле, и с некоторыми математическими методами, используемыми для определения поля.
Отметим для начала, что математически вся задача состоит в решении двух уравнений — максвелловских уравнений электростатики:

(6.1)

(6.2)
Фактически оба эти уравнения можно объединить в одно. Из второго уравнения сразу же следует, что поле может считаться градиентом некоего скаляра (см. гл. 3, § 7):

(6.3)
Электрическое поле каждого частного вида можно, если нужно, полностью описать с помощью потенциала поля j. Дифференциальное уравнение, которому должно удовлетворять j, получится, если (6.3) подставить в (6.1):

(6.4)
Расходимость градиента j—это то же, что С 2, действующее на j:

(6.5)

так что уравнение (6.4) мы запишем в виде
(6.6)
Оператор С 2называется лапласианом, а уравнение (6.6) — уравнением Пуассона. Весь предмет электростатики с математической точки зрения заключается просто в изучении решений одного-единственного уравнения (6.6). Как только из (6.6) вы найдете j, поле Е немедленно получается из (6.3).

Обратимся сперва к особому классу задач, в которых r задано как функция х, у, z . Такая задача почти тривиальна, потому что решать уравнение (6.6) в общем случае мы уже умеем. Мы ведь показали, что если r в каждой точке известно, то потенциал в точке (1) равен
Читать дальше