(6.7)

где r(2) — плотность заряда, dV 2— элемент объема в точке (2), а r 12— расстояние между точками (1) и (2). Решение дифференциального уравнения (6.6) свелось к интегрированию по пространству. Решение (6.7) нужно отметить особо, потому что в физике часто встречаются ситуации, приводящие к уравнениям, которые выглядят так:
и (6.7) является прототипом решения любой такой задачи.
Проблема расчета электростатического поля, таким образом, решается совершенно честно, если только положения всех зарядов известны. Давайте посмотрим на нескольких примерах, как действует эта формула.
§ 2. Электрический диполь

Сначала возьмем два точечных заряда + q и - q , разделенных промежутком d . Проведем ось z через заряды, а начало координат поместим посредине между ними (фиг. 6.1). Тогда по формуле (4.24) потенциал системы двух зарядов дается выражением
Мы не собираемся выписывать формулу для электрического поля, но всегда при желании можем это сделать, раз мы знаем потенциал. Так что задача двух зарядов решена.
Существует важный частный случай этой задачи, когда заряды расположены близко друг к другу, иными словами, когда нас интересует поле на таких расстояниях от зарядов, что по сравнению с ними промежуток между зарядами кажется незначительным. Такую тесную пару зарядов называют диполем. Диполи встречаются очень часто.

Фиг. 6.1. Диполь: два заряда +q и - q , удаленные друг от друга на расстояние d .
«Дипольную» антенну можно часто приближенно рассматривать как два заряда, разделенные небольшим расстоянием (если нас не интересует поле у самой антенны). (Обычно интерес представляют антенны с движущимися зарядами; уравнения статики тогда неприменимы, но для некоторых целей они все же представляют весьма сносное приближение.)
Важнее, пожалуй, диполи атомные. Если в каком-то веществе есть электрическое поле, то электроны и протоны испытывают влияние противоположных сил и смещаются друг относительно друга. Вы помните, что в проводнике некоторые электроны сдвигаются к поверхности, так что внутреннее поле обращается в нуль. В изоляторе электроны не могут сильно разойтись; им мешает притяжение ядра. И все же они как-то смещаются. Так что хотя атом (или молекула) и остается нейтральным, во внешнем электрическом поле все же возникает еле заметное разделение положительных и отрицательных зарядов, и атом становится микроскопическим диполем. Если нам нужно знать поле этих атомных диполей поблизости от предмета обычных размеров, то мы имеем дело с расстояниями, большими по сравнению с промежутками между зарядами.
В некоторых молекулах из-за самой их формы заряды несколько разделены даже в отсутствие внешних полей. В молекуле воды, например, имеется отрицательный заряд на атоме кислорода и положительный заряд на обоих атомах водорода, которые расположены несимметрично (фиг. 6.2). Хоть заряд всей молекулы равен нулю, все же имеется распределение заряда с небольшим преобладанием отрицательного заряда на одной стороне и положительного на другой. Это расположение, конечно, не такое простое, как у двух точечных зарядов, но если смотреть на него издалека, оно действует как диполь. Как мы увидим чуть позже, поле на больших расстояниях нечувствительно к мелким деталям расположения.

Фиг. 6.2. Молекула воды Н 2O.

Взглянем теперь на поле двух зарядов противоположных знаков, расстояние d между которыми мало. Если d станет нулем, два заряда сойдутся в одном месте, два потенциала сократятся, поле исчезнет. Но если они не совсем слились, то можно получить хорошее приближение к потенциалу, разложив слагаемые в (6.8) в ряд по степеням малой величины d (по формуле бинома Ньютона). Оставляя только первые степени d , мы напишем
Читать дальше