Feynmann - Feynmann 4a
Здесь есть возможность читать онлайн «Feynmann - Feynmann 4a» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Feynmann 4a
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:3 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
- 60
- 1
- 2
- 3
- 4
- 5
Feynmann 4a: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 4a»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
Feynmann 4a — читать онлайн бесплатно полную книгу (весь текст) целиком
Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 4a», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.
Интервал:
Закладка:
Нетрудно догадаться, что при этом произойдет. Действуя так же, как прежде, давайте предположим, что имеются два одинаковых осциллирующих источника с одной и той же частотой, причем фазы их подобраны так, что в некоторую точку Р сигналы приходят с одинаковой фазой. Если это свет, то в этой точке он очень ярок, если это звук, то он очень громок, а если это электроны, то их очень много. С другой стороны, если приходящие волны отличаются по фазе на 180°, то в точке Р не будет никаких сигналов, ибо полная амплитуда будет иметь здесь минимум. Предположим теперь, что некто крутит ручку «регулировка фазы» одного из источников и меняет разность фаз в точке Р то туда, то сюда, скажем сначала он делает ее нулевой, затем — равной 180° и т. д. При этом, разумеется, будет меняться и сила приходящего сигнала. Ясно теперь, что если фаза одного из источников медленно, постоянно и равномерно меняется по сравнению с другим, начиная с нуля, а затем возрастает постепенно до 10, 20, 30, 40° и т. д., то в точке Р мы увидим ряд слабых и сильных «пульсаций», ибо когда разность фаз проходит через 360°, в амплитуде снова возникает максимум. Но утверждение, что один источник с постоянной скоростью меняет свою фазу по отношению к другому, равносильно утверждению, что число колебаний в 1 сек у этих двух источников несколько различно.
Итак, теперь известен ответ: если взять два источника, частоты которых немного различны, то в результате сложения получаются колебания с медленно пульсирующей интенсивностью. Иначе говоря, все сказанное здесь действительно имеет отношение к делу!
Этот результат легко получить и математически. Предположим, например, что у нас есть две волны и забудем на минуту о всех пространственных соотношениях, а просто посмотрим, что приходит в точку Р. Пусть от одного источника приходит волна cosw 1t, а от другого — волна cosw 2t, причем обе частоты w 1и w 2не равны в точности друг другу. Разумеется, амплитуды их тоже могут быть различными, но сначала давайте предположим, что амплитуды равны. Общую задачу мы рассмотрим позднее. Полная амплитуда в точке Р при этом будет суммой двух косинусов. Если мы построим график зависимости амплитуды от времени, как это показано на фиг.48.1,то окажется, что, когда гребни двух волн совпадают, получается большое отклонение, когда совпадают гребень и впадина — практически нуль, а когда гребни снова совпадают, вновь получается большая волна.
Фиг. 48.1. Суперпозиция двух косинусообразных волн с отношением частот 8:10. Точное повторение колебаний внутри каждого биения для общего случая не типично.
Математически нам нужно взять сумму двух косинусов и как-то ее перестроить. Для этого потребуются некоторые полезные соотношения между косинусами. Давайте получим их. Вы знаете, конечно, что
e i ( a + b )=e iae ib (48.1)
и что вещественная часть экспоненты e ia равна cos а, а мнимая часть равна sin а. Если мы возьмем вещественную часть ехр [-i ( a + b )], то получим cos ( a +b), а для произведения
e ia e ib =(cos a+ i sin a) (cos b+i sin b)
мы получаем cos a cos b - sinasinb плюс некоторая мнимая добавка. Сейчас, однако, нам нужна только вещественная часть. Таким образом,
cos ( a + b ) =cos a cos b - sin a sin b . (48.2)
Если теперь изменить знак величины b , то, поскольку косинус при этом не изменяет знака, а синус изменяет знак на обратный, мы получаем аналогичное выражение для косинуса разности
cos (a-b) =cos a cos b+ sin a sin b. (48.3)
После сложения этих двух уравнений произведение синусов сократится, и мы находим, что произведение двух косинусов равно половине косинуса суммы плюс половина косинуса разности
cos a cos b = 1 / 2 cos ( а + b ) + 1 / 2 cos (a-b ). (48.4)
Теперь можно обернуть это выражение и получить формулу для cosa+cosb, если просто положить a = а+b, a b= а- b , т. е. a = 1/ 2(a+b), a b= 1/ 2(a-b):
cosa+cosb=2cos 1/ 2(a+b) cos 1/ 2(a-b). (48.5)
Но вернемся к нашей проблеме. Сумма cosw 1t и cosw 2t равна
cosw 1t+cosw 2t=2cos 1/ 2(w 1+w 2)tcos 1/ 2(w 1-w 2)t. (48.6)
Пусть теперь частоты приблизительно одинаковы, так что 1/ 2(w 1+w 2) равна какой-то средней частоте, которая более или менее та же, что и каждая из них. Но разность w 1-w 2 гораздо меньше, чем w 1и w 2, поскольку мы предположили, что w 1и w 2приблизительно равны друг другу. Это означает, что результат сложения можно истолковать так, как будто есть косинусообразная волна с частотой, более или менее равной первоначальным, но что «размах» ее медленно меняется: он пульсирует с частотой, равной 1 l 2 ( w 1 - w 2 )- Но та ли это частота, с которой мы слышим биения? Уравнение (48.6) говорит, что амплитуда ведет себя как cos 1/ 2(w 1-w 2), и это надо понимать так, что высокочастотные колебания заключены между двумя косинусоидами с противоположными знаками (пунктирная линия на фиг. 48.1). Хотя амплитуда действительно меняется с частотой 1/ 2(w 1-w 2), однако если речь идет об интенсивности волн, то мы должны представлять себе частоту в два раза большую. Иначе говоря, модуляция амплитуды в смысле ее интенсивности происходит с частотой w 1-w 2, хотя мы и умножаем на косинус половинной частоты.
Читать дальшеИнтервал:
Закладка:
Похожие книги на «Feynmann 4a»
Представляем Вашему вниманию похожие книги на «Feynmann 4a» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.
Обсуждение, отзывы о книге «Feynmann 4a» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.