Feynmann - Feynmann 4

Здесь есть возможность читать онлайн «Feynmann - Feynmann 4» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 4: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 4»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 4 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 4», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Итак, мы приступаем к вычислению общего потока молекул особого газа, порождаемого молекулярным движением. Общий поток не равен нулю только тогда, когда распределение молекул отличается от равновесного, иначе усреднение молекулярного движения сводит общий поток к нулю. Рассмотрим сначала поток в направлении оси х. Чтобы определить, чему этот поток равен, мы должны вообразить площадку, перпендикулярную к оси, и подсчитать число молекул, пересекающих эту площадку. Чтобы определить общий поток, мы должны считать положи­тельными те молекулы, которые движутся в направлении положительных x, и вычесть из этого числа те молекулы, которые движутся в противоположном направлении. Как мы неоднократно убеждались, число молекул, пересекающих пло­щадку в течение времени DT, равно числу молекул, находя­щихся к началу интервала DT внутри объема, заключенного между нашей площадкой и площадкой, расположенной от нее на расстоянии v D T . (Заметим, что здесь v настоящая скорость молекулы, а отнюдь не скорость дрейфа.)

Мы упростим наши выкладки, если возьмем площадку еди­ничной площади. Тогда число особых молекул, пересекающих площадку слева направо (справа от площадки лежат положи­тельные x-направления), равно n _ v D T , где n _ — число особых молекул в единичном объеме слева от площадки (с точностью до множителя ~ 1/ 6, но мы такими множителями пренебрежем!). Аналогично, число особых молекул, движущихся справа налево, равно n + v D T , где n + плотность особых молекул справа от площадки. Если мы обозначим молекулярный поток буквой J, под которой мы будем понимать общий поток молекул через единичную площадку за единицу времени, то получим

или J n n v 4322 А что понимать под n и n Когда мы - фото 74

или

J =( n - - n + ) v . (43.22)

А что понимать под n - и n +? Когда мы говорим «плотность слева от площадки», то как далеко налево? Мы должны изме­рить плотность в том месте, откуда молекула отправляется в свой «свободный полет», потому что число стартующих молекул определяется числом молекул, находящихся в этом месте. Таким образом, n - — это плотность молекул на расстоянии длины свободного пробега l слева от нашей воображаемой площадки, а n +— плотность молекул на расстоянии длины свободного пробега справа от нее.

Распределение особых молекул в ящике удобно описывать с помощью непрерывной функции х, у и z, которую мы обозна­чим n a . Под n a (х, у, z ) нужно понимать плотность особых молекул в маленьком объеме вокруг точки (х, у, z ). Тогда

разность ( n + - n - ) можно представить в виде

( n + - n - )=( dn a / dx ) D x =( dn a / dx ) · 2 l (43.23)

Подставляя этот результат в (43.22) и пренебрегая множителем 2, получаем

J x = lv ( dn a / dx ) (43.24)

Мы выяснили, что поток особых молекул пропорционален про­изводной плотности, или, как иногда говорят, «градиенту плотности».

Ясно что мы сделали несколько грубых приближений Не говоря уже о том что мы - фото 75

Ясно, что мы сделали несколько грубых приближений. Не говоря уже о том, что мы постоянно забывали о множителях, мы использовали v , когда нужно было ставить v x , а разместив объемы, содержащие молекулы n + и n -, на концах перпенди­куляров к площадке, взяли перпендикуляры длиной l . Между тем для тех молекул, которые движутся не перпендикулярно к поверхности, l соответствует длине наклонного пути. Можно исправить эти недоделки; более тщательный анализ показал бы, что правую часть уравнения (43.24) нужно умножить на 1/ 3. Итак, более правильный ответ выглядит следующим образом:

Аналогичные уравнения можно написать для токов вдоль y - и z-направлений.

С помощью макроскопических наблюдений можно измерить ток J х и градиент - фото 76

С помощью макроскопических наблюдений можно измерить ток J х и градиент плотности dn a / dx . Их отношение, найденное экспериментально, называется «коэффициентом диффузии» D , Это значит, что

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 4»

Представляем Вашему вниманию похожие книги на «Feynmann 4» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 4»

Обсуждение, отзывы о книге «Feynmann 4» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x