Итак, мы приступаем к вычислению общего потока молекул особого газа, порождаемого молекулярным движением. Общий поток не равен нулю только тогда, когда распределение молекул отличается от равновесного, иначе усреднение молекулярного движения сводит общий поток к нулю. Рассмотрим сначала поток в направлении оси х. Чтобы определить, чему этот поток равен, мы должны вообразить площадку, перпендикулярную к оси, и подсчитать число молекул, пересекающих эту площадку. Чтобы определить общий поток, мы должны считать положительными те молекулы, которые движутся в направлении положительных x, и вычесть из этого числа те молекулы, которые движутся в противоположном направлении. Как мы неоднократно убеждались, число молекул, пересекающих площадку в течение времени DT, равно числу молекул, находящихся к началу интервала DT внутри объема, заключенного между нашей площадкой и площадкой, расположенной от нее на расстоянии v D T . (Заметим, что здесь v — настоящая скорость молекулы, а отнюдь не скорость дрейфа.)
Мы упростим наши выкладки, если возьмем площадку единичной площади. Тогда число особых молекул, пересекающих площадку слева направо (справа от площадки лежат положительные x-направления), равно n _ v D T , где n _ — число особых молекул в единичном объеме слева от площадки (с точностью до множителя ~ 1/ 6, но мы такими множителями пренебрежем!). Аналогично, число особых молекул, движущихся справа налево, равно n + v D T , где n + — плотность особых молекул справа от площадки. Если мы обозначим молекулярный поток буквой J, под которой мы будем понимать общий поток молекул через единичную площадку за единицу времени, то получим

или
J =( n - - n + ) v . (43.22)
А что понимать под n - и n +? Когда мы говорим «плотность слева от площадки», то как далеко налево? Мы должны измерить плотность в том месте, откуда молекула отправляется в свой «свободный полет», потому что число стартующих молекул определяется числом молекул, находящихся в этом месте. Таким образом, n - — это плотность молекул на расстоянии длины свободного пробега l слева от нашей воображаемой площадки, а n +— плотность молекул на расстоянии длины свободного пробега справа от нее.
Распределение особых молекул в ящике удобно описывать с помощью непрерывной функции х, у и z, которую мы обозначим n a . Под n a (х, у, z ) нужно понимать плотность особых молекул в маленьком объеме вокруг точки (х, у, z ). Тогда
разность ( n + - n - ) можно представить в виде
( n + - n - )=( dn a / dx ) D x =( dn a / dx ) · 2 l (43.23)
Подставляя этот результат в (43.22) и пренебрегая множителем 2, получаем
J x = lv ( dn a / dx ) (43.24)
Мы выяснили, что поток особых молекул пропорционален производной плотности, или, как иногда говорят, «градиенту плотности».

Ясно, что мы сделали несколько грубых приближений. Не говоря уже о том, что мы постоянно забывали о множителях, мы использовали v , когда нужно было ставить v x , а разместив объемы, содержащие молекулы n + и n -, на концах перпендикуляров к площадке, взяли перпендикуляры длиной l . Между тем для тех молекул, которые движутся не перпендикулярно к поверхности, l соответствует длине наклонного пути. Можно исправить эти недоделки; более тщательный анализ показал бы, что правую часть уравнения (43.24) нужно умножить на 1/ 3. Итак, более правильный ответ выглядит следующим образом:
Аналогичные уравнения можно написать для токов вдоль y - и z-направлений.

С помощью макроскопических наблюдений можно измерить ток J х и градиент плотности dn a / dx . Их отношение, найденное экспериментально, называется «коэффициентом диффузии» D , Это значит, что
Читать дальше