Feynmann - Feynmann 4

Здесь есть возможность читать онлайн «Feynmann - Feynmann 4» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 4: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 4»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 4 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 4», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если в какой-то произвольный момент времени начать на­блюдать за S-молекулой, то можно надеяться, что попали мы как раз где-то между двумя столкновениями. Это время молекула употребит на то, чтобы в дополнение к скорости, оставшейся у нее после всех столкновений, увеличить состав­ляющую скорости вдоль силы F. Немного погодя (в среднем через время t) она снова испытает столкновение и начнет двигаться по новому отрезку своей траектории. Стартовая скорость, конечно, будет другой, а ускорение от силы Fоста­нется неизменным.

Чтобы упростить сейчас дело, предположим, что после каж­дого столкновения наша S-молекула выходит на совершенно «свободный» старт. Это значит, что у нее не осталось никаких воспоминаний о прежних ускорениях под действием силы F. Та­кое предположение было бы разумным, если бы наша S-моле­кула была намного легче молекул фона, но это, конечно, не так. Позднее мы обсудим более разумное предположение.

А пока предположим, что все направления скорости S-молекулы после каждого столкновения равновероятны. Стартовая скорость имеет любое направление и не может дать никакого вклада в результирующее движение, поэтому мы не будем принимать во внимание начальную скорость после каждого столкновения. Но, кроме случайного движения, каждая S-молекула в любой момент имеет дополнительную скорость в направлении силы F, которая увеличивается со времени по­следнего столкновения. Чему равно среднее значение этой части скорости? Оно равно произведению ускорения F / m (где т — масса S-молекулы) на среднее время, прошедшее с момента последнего столкновения. Но среднее время, протекшее после последнего столкновения, должно быть равно среднему времени перед следующим столкновением, которое мы уже обозначили буквой t . Средняя скорость, порождаемая силой F,— это как раз скорость дрейфа; таким образом, мы пришли к соотношению

V др=Ft/m. (43.13)

Это наше основное соотношение, главное во всей главе. При нахождении t могут появиться всякого рода усложнения, но основной процесс определяется уравнением (43.13).

Обратите внимание, что скорость дрейфа пропорциональна силе. К сожалению, о названии для постоянной пропорцио­нальности еще не договорились. Коэффициент перед силой каждого сорта имеет свое название. В задачах, связанных с электричеством, силу можно представить как произведение заряда на электрическое поле: F=qE; в этом случае постоянную пропорциональности между скоростью и электрическим полем Е называют «подвижностью». Несмотря на возможные недоразу­мения, мы будем применять термин подвижность для отноше­ния скорости дрейфа к силе любого сорта. Будем писать

v др=mF (43.14) и называть m, подвижностью. Из уравнения (43.13) следует

m=t/m. (43.15)

Подвижность пропорциональна среднему времени между столк­новениями (редкие столкновения слабо тормозят S-молекулу) и обратно пропорциональна массе (чем больше инерция, тем медленнее набирается скорость между столкновениями).

Чтобы получить правильный численный коэффициент в уравнении (43.13) (а у нас он верен), нужна известная осто­рожность. Во избежание недоразумений нужно помнить, что мы используем коварные аргументы, и употреблять их можно только после осторожного и детального изучения. Чтобы пока­зать, какие бывают трудности, хотя по виду вроде все благопо­лучно, мы снова вернемся к тем аргументам, которые привели к выводу уравнения (43.13), но эти аргументы, которые вы­глядят вполне убедительно, приведут теперь к неверному резуль­тату (к сожалению, такого рода рассуждения можно найти во многих учебниках!).

Можно рассуждать так: среднее время между столкнове­ниями равно т. После столкновения частица, начав двигаться со случайной скоростью, набирает перед следующим столкно­вением дополнительную скорость, которая равна произведению времени на ускорение. Поскольку до следующего столкновения пройдет время t, то частица наберет скорость ( F / m ) t . В момент столкновения эта скорость равна нулю. Поэтому средняя ско­рость между двумя столкновениями равна половине окончательной скорости, а средняя скорость дрейфа равна 1 / 2 F t / m . (Неверно!) Этот вывод неверен, а уравнение (43.13) правильно, хотя, казалось бы, в обоих случаях мы рассуждали одинаково убедительно. Во второй результат вкралась довольно коварная ошибка: при его выводе мы фактически предположили, что все столкновения отстоят друг от друга на время t. На самом деле некоторые из них наступают раньше, а другие позже этого времени. Более короткие времена встречаются чаще, но их вклад в скорость дрейфа невелика, потому что слишком мала в этом случае вероятность «реального подталкивания вперед». Если при­нять во внимание существование распределения свободного вре­мени между столкновениями, то мы увидим, что множителю 1/ 2, полученному во втором случае, неоткуда взяться. Ошибка произошла из-за того, что мы, обманувшись простотой аргу­ментов, попытались слишком просто связать среднюю скорость со средней конечной скоростью. Связь между ними не столь уж проста, поэтому лучше подчеркнуть, что нам нужна средняя скорость сама по себе. В первом случае мы с самого начала искали среднюю скорость и нашли ее верное значение! Быть может, теперь вам понятно, почему мы не пытались найти точ­ного значения всех численных коэффициентов в наших элемен­тарных уравнениях?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 4»

Представляем Вашему вниманию похожие книги на «Feynmann 4» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 4»

Обсуждение, отзывы о книге «Feynmann 4» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x