
Теплопроводность c определяется как отношение скорости переноса тепловой энергии через единичную площадку к градиенту температуры:
Поскольку ход вычислений теплопроводности очень похож на вычисление потока заряженных частиц в ионизованном газе, то мы предлагаем читателю в виде упражнения доказать, что

при этом (g-1 ) kT — средняя энергия молекулы при температуре Т.

Если вспомнить о соотношении nl s c =1, то теплопроводность можно записать в виде
Мы получили поистине удивительный результат. Известно, что средняя скорость молекул газа зависит от температуры и не зависит от плотности. Можно думать, что s с зависит только от размеров молекул. Таким образом, наш очень простой вывод сводится к тому, что теплопроводность c (а следовательно, и скорость потока тепла в каждом частном случае) не зависит от плотности газа! Изменение числа «носителей» энергии при изменениях плотности в точности компенсируется изменением расстояния, которое пробегает «носитель» между столкновениями.
А теперь можно спросить: Действительно ли поток тепла всегда не зависит от плотности газа? Ну а если плотность стремится к нулю и в ящике совсем не остается газа? Конечно, нет! Формула (43.43), как и другие формулы этой главы, выведена в предположении, что средняя длина свободного пробега между столкновениями гораздо меньше любых размеров ящика. Если плотность газа столь мала, что молекула имеет неплохие шансы пробежаться от одной стенки ящика к другой, ни разу не столкнувшись, то все вычисления этой главы рухнут. В этих случаях следует вернуться к кинетической теории и заново все детально рассчитать.
Глава 44
ЗАКОНЫ ТЕРМОДИНАМИКИ
§ 1. Тепловые машины; первый закон
§ 2. Второй закон
§ 3. Обратимые машины
§ 4. Коэффициент полезного действия идеальной машины
§ 5. Термодинамическая температура
§ 6. Энтропия
§ 1. Тепловые машины; первый закон
До сих пор мы рассматривали свойства вещества с атомной точки зрения, причем мы пытались, хотя бы в общих чертах, понять, что произойдет, если принять, что вещество состоит из атомов, подчиняющихся тем или иным законам. Однако вещество обладает и такими свойствами, которые можно понять, не изучая подробно его строения. Поисками соотношений между различными свойствами вещества, не углубляясь в изучение внутреннего его строения, занимается термодинамика. Исторически термодинамика стала наукой еще до того, как более или менее точно узнали о внутреннем строении вещества.
Приведем пример: согласно кинетической теории, давление газа вызывается молекулярной бомбардировкой, и нам известно, что при нагревании газа бомбардировка усиливается и давление должно повыситься. И наоборот, если внутрь ящика с газом вдвигается поршень, преодолевающий сопротивление бомбардирующих его молекул, то энергия этих молекул возрастает, а соответственно повышается и температура. Итак, повышая температуру внутри заданного объема, мы увеличиваем давление. Если же мы сжимаем газ, то повышается его температура. Используя кинетическую теорию, можно найти количественные соотношения между этими двумя эффектами, однако каждому понятно, что между давлением и температурой обязательно должна существовать некоторая связь, не зависящая от деталей столкновений.
Рассмотрим еще один пример. Многим, наверное, известно интересное свойство резины — если растянуть ее, она нагреется. Если вы зажмете губами резиновую полоску и, потянув рукой, растянете ее, то отчетливо почувствуете, что она нагрелась. Это нагревание обратимо, т. е. если вы, продолжая держать полоску губами, быстро отпустите ее, то возникнет столь же отчетливое ощущение холода. Это означает, что при растяжении резина нагревается, а при ослаблении натяжения она охлаждается. Наш инстинкт может нам подсказать, что нагретая резина тянет лучше: если растяжение нагревает резину, то нагревание заставит ее сжаться. Действительно, если поднести к растягиваемой грузиком резиновой полоске газовую горелку, то мы заметим, что полоска резко сократится (фиг. 44.1).
Читать дальше