В паровой машине тепло используется для кипячения воды. Образующийся пар, расширяясь, толкает поршень, а поршень крутит маховик. Итак, пар вытолкнул поршень до отказа — что дальше? Эта порция пара свою работу выполнила, однако самое неразумное было бы закончить цикл выпуском пара в атмосферу, тогда к паровому котлу придется вновь подводить воду. Дешевле, а значит, и эффективнее отводить пар в другой сосуд, где он будет конденсироваться холодной водой, и образующуюся при этом воду можно будет снова вернуть в паровой котел, обеспечив непрерывную циркуляцию. Таким образом, паровая машина поглощает тепло и превращает его в работу. А может быть, лучше залить котел спиртом? Какими свойствами должно обладать вещество, чтобы обеспечить наилучшую работу машины? Этот вопрос задавал себе Карно и, размышляя таким образом, как мы уже сказали, попутно открыл соотношение очень общего типа.
Все результаты термодинамики содержатся в нескольких предельно простых утверждениях, называемых законами термодинамики. Во времена Карно первый закон термодинамики — закон сохранения энергии —был еще не известен. Однако аргументы были сформулированы Карно так точно, что они оказались правильными, хотя первый закон тогда не был еще открыт! Немного позже Клаузиус привел более простой вывод, который понять оказалось легче, чем очень тонкие рассуждения Карно. Но Клаузиус исходил из предположения, что сохраняется не полная энергия, а теплота; так считала в то время калорическая теория, которая впоследствии была вообще отвергнута как неверная. Поэтому часто говорят, что аргументы Карно были ложными. На самом же деле логика Карно безукоризненна. Неверно только упрощенное толкование этих аргументов Клаузиусом, а именно с ним все обычно знакомятся.
Так случилось, что так называемый второй закон термодинамики был открыт Карно раньше первого закона! Было бы очень интересно привести здесь аргументы Карно, не опирающиеся на первый закон. Но придется отказаться от этого, потому что мы изучаем физику, а не историю. С самого начала будем пользоваться первым законом, хотя многое можно было бы сделать и без него.
Сначала сформулируем первый закон, закон сохранения энергии: если нам дана система и мы подводим к ней тепло и производим над ней какую-то работу, то приращение энергии системы равно подведенному теплу и затраченной работе. Мы запишем все это так: к системе подводится тепло Q и над ней производится работа W , тогда энергия системы U возрастает; эту энергию иногда называют внутренней энергией. Связаны эти величины следующим соотношением:
Изменение U = Q + W . (44.1)
Изменение U можно получить, добавляя небольшое количество тепла DQ и небольшую работу DW:
D U = D Q + D W . (44.2)
Это — дифференциальная форма того же закона. Все это мы уже хорошо знаем из предыдущей главы.
§ 2 . Второй закон
А что такое второй закон термодинамики? Мы знаем, что если при работе приходится преодолевать трение, то потерянная работа равна выделившемуся теплу. Если мы преодолеваем трение в комнате при температуре Т и делаем это достаточно медленно, то температура в комнате изменится ненамного. Мы превращаем работу в тепло при постоянной температуре. Ну, а можно ли поступить наоборот? Сумеем ли мы каким-то способом превратить тепло в работу при постоянной температуре? Второй закон термодинамики утверждает, что это невозможно. Было бы очень хорошо научиться превращать тепло в работу, изменив лишь направление процесса, похожего на трение. Если исходить только из закона сохранения энергии, можно считать, что тепловая энергия, например колебательная энергия молекул, способна служить удобным источником полезной энергии. Но Карно утверждал, что при постоянной температуре тепловую энергию нельзя извлечь из ее источника. Иначе говоря, если бы весь мир имел повсюду одинаковую температуру, то оказалось бы невозможным превратить тепловую энергию в работу. Хотя процессы, при которых работа переходит в тепло, могут идти при постоянной температуре, невозможно обратить их и вернуть работу обратно. Если говорить точно, Карно утверждал, что при постоянной температуре нельзя извлечь тепло из его источника и превратить в работу, не производя больше никаких изменений в заданной нам системе или в окружающем пространстве.
Читать дальше