Feynmann - Feynmann 4

Здесь есть возможность читать онлайн «Feynmann - Feynmann 4» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 4: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 4»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 4 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 4», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

поскольку 1 / 2 mu 2 = mgh . Теперь скажем это своими словами: число молекул, пересекающих за 1 сек единичную площадь

на высоте 0 с вертикальной составляющей скорости, превышаю­щей и, равно произведению числа молекул, пересекающих эту площадку со скоростью, большей нуля, на ехр(- mu 2 /2 kT ).

Это верно не только для произвольной высоты 0, но и для любой другой высоты, поэтому распределение по скоростям одинаково повсюду ! (Окончательный результат не включает высоты h , она появляется только в промежуточных рассужде­ниях.) Это общая теорема о распределении по скоростям. В ней утверждается, что если в столбе газа просверлить крохот­ную дырочку, ну совсем малюсенькую, так что столкновения там будут редки и длина пробега молекул между столкнове­ниями будет много больше диаметра дырочки, то молекулы будут вылетать из нее с разными скоростями, но доля частиц, вылетающих со скоростью, превышающей и, равна ехр(- mu 2 /2 kT ).

Теперь вернемся к вопросу о том, можно ли пренебрегать столкновениями. Почему это не имеет значения? Мы могли бы повторить все наши доводы, используя не конечную высоту h , а бесконечно малую высоту h , столь малую, что для столкнове­ний между высотами 0 и h было бы слишком мало места. Но это не обязательно: наши доводы, очевидно, основаны лишь на анализе значений энергий и на сохранении энергии; при столкновениях же происходит обмен энергиями среди молекул. Но нам довольно безразлично, следим ли мы за одной и той же молекулой, раз происходит лишь обмен энергиями с другой молекулой. И получается, что если мы даже сделаем это доста­точно тщательно (а такую работу тщательно проделать, конечно, труднее), то результат будет тот же.

Интересно, что найденное нами распределение по скоростям имеет вид

n > u ~ e - к.э. / kT . (40.4)

Этот способ описания распределения по скоростям —когда подсчитывается число молекул, проходящих через выделенную площадку с заданной минимальной z-составляющей скорости,— отнюдь не самый удобный. Например, чаще хотят знать, сколько молекул в заданном объеме газа движется, имея z -составляющую скорости между двумя заданными значениями, а это, конечно, из (40.4) сразу не получишь. Поэтому придадим нашей формуле удобную форму, хотя то, что мы получили, — это весьма общий результат. Заметим, что невозможно утверж­дать, что любая молекула в точности обладает той или иной наперед заданной скоростью; ни одна из них не движется со скоростью, в точности равной 1,7962899173 м/сек. Итак, чтобы придать нашему утверждению какой-то смысл, мы должны спросить, сколько молекул можно найти в заданном интервале скоростей. Нам придется говорить о том, как часто встречаются скорости в интервале между 1,796 и 1,797 и т. п. Выражаясь математически, пусть f ( u ) du будет долей всех молекул, чьи скорости заключены в промежутке u и u + du , или, что то же самое (если du бесконечно мало), долей всех молекул, имею­щих скорость и с точностью до du . На фиг. 40.5 представлена возможная форма функции f(u), а заштрихованная часть ширины du и средней высоты f ( u ) это доля молекул f ( u ) du . Таким образом, отношение площади заштрихованного участка ко всей площади под кривой равно относительному числу молекул со скоростью и внутри отрезка du .

Фиг 405 Функция распределения скоростей Заштрихованная площадь равна f - фото 18

Фиг. 40.5. Функция, распределения скоростей.

Заштрихованная площадь равна f ( u ) duэто относи­тельное число частиц, ско­рости которых заключены внутри отрезка du около точки u .

Если опре­делить f ( u ) так, что относительное число молекул будет просто равно площади заштрихованного участка, то полная площадь под кривой — это все 100% молекул, т. е.

Теперь остается только найти это распределение сравнив его с результатом - фото 19

Теперь остается только найти это распределение, сравнив его с результатом доказанной ранее теоремы. Сначала надо выяснить, как выразить через f ( u ) число молекул, проходящих за 1 сек через заданную площадку со скоростью, превышаю­щей u?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 4»

Представляем Вашему вниманию похожие книги на «Feynmann 4» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 4»

Обсуждение, отзывы о книге «Feynmann 4» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x