Это число не равно интегралу
(хотя это первое, что приходит в голову), ведь нас интересует число молекул, проходящих через площадку за секунду. Более быстрые молекулы будут пересекать площадку, так сказать, чаще, чем более медленные, поэтому, чтобы найти число проходящих молекул, надо умножить плотность молекул на скорость. (Мы уже обсуждали это в предыдущей главе, когда подсчитывали число столкновений.)

Полное число молекул, проходящих через поверхность за время t , равно числу молекул, способных достигнуть поверхности, а это молекулы, проходящие к поверхности с расстояния ut . Таким образом, число молекул, достигающих площадки, определяется не просто числом молекул, движущихся с данной скоростью, а равно этому числу, отнесенному к единице объема, и умноженному на расстояние, которое они пройдут, прежде чем достигнут площадки, сквозь которую они, по-видимому, должны пройти, а это расстояние пропорционально и. Значит, нам предстоит вычислить интеграл от произведения и на f ( u ) du , взятый от и до бесконечности, причем мы уже знаем, что этот интеграл обязательно должен быть пропорционален ехр(- mu 2 /2 kT ), а постоянную пропорциональности еще надо определить:

Если теперь продифференцировать интеграл по и, то мы получим подынтегральное выражение (со знаком минус, потому что и — это нижний предел интегрирования), а дифференцируя правую часть равенства, мы получим произведение и на экспоненту (и на некоторую постоянную). Сократим в обеих частях и, и тогда
Мы оставили в обеих частях равенства du , чтобы помнить, что это распределение; оно говорит нам об относительном числе молекул, имеющих скорость между u и u + du .
Постоянная С должна определиться из условия равенства интеграла единице в согласии с уравнением (40.5). Можно доказать, что

Используя это обстоятельство, легко найти С= Ц ( m /2 p kT ).
Поскольку скорость и импульс пропорциональны, можно утверждать, что распределение молекул по импульсам, отнесенное к единице импульсной шкалы, также пропорционально ехр(- к.э. / kT ). Оказывается, что эта теорема верна также в теории относительности, если только формулировать ее в терминах импульсов, тогда как в терминах скоростей это уже не так; поэтому сформулируем все в терминах импульсов:
f ( p ) dp = ce - к.э. / kT dp . (40.8)
Это значит, что мы установили, что вероятности, определяемые энергиями разного происхождения (и кинетической и потенциальной), в обоих случаях выражаются одинаково: ехр(-энергия/kT); таким образом, наша замечательная теорема приобрела форму, весьма удобную для запоминания.
Однако пока мы говорили только о «вертикальном» распределении скоростей. Но мы можем спросить, какова вероятность того, что молекула движется в другую сторону? Конечно, эти распределения связаны друг с другом и можно получить полное распределение, исходя из какого-то одного, ведь полное распределение зависит только от квадрата величины скорости, а не от ее z-составляющей. Распределение по скоростям не должно зависеть от направления и определяться только функцией u 2— вероятностью величины скорости. Нам известно распределение z-составляющей, и мы хотим получить отсюда распределение других составляющих. В результате полное распределение по-прежнему пропорционально ехр(-к.э./kT), только теперь кинетическая энергия состоит из трех частей: mv 2 x /2, mv 2 y /2 и mv 2 z /2, суммируемых в показателе экспоненты. А можно записать это и в виде произведения:

f ( v x ,, v y , v z ) dv x dv y dv z ~
Вы можете убедиться в том, что эта формула верна, ибо, во-первых, распределение зависит только от v 2и, во-вторых, вероятности данных v г получаются после интегрирования по всем v x и v y и это должно привести к (40.7). Но обоим этим требованиям удовлетворяет только функция (40.9).
Читать дальше