Feynmann - Feynmann 1

Здесь есть возможность читать онлайн «Feynmann - Feynmann 1» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 1: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 1»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 1 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 1», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

a· b = a x b x + a y b y + a z b z , (11.19)

то можно убедиться, что эта величина совпадает в штрихованной и нештрихованной системах координат. Чтобы доказать это, заметим, что это верно для величин а· а, b· bи с· с,где с=а+ b .Сумма квадратов ( a x + b x ) 2 +( a y + b y ) 2 +( a z +b z) 2—ин­вариант:

x + b x ) 2 +(а y + b y )2 +(а z+ b г ) 2 = (а x '+b x ') 2+ (a y '+ b у ' ) 2 + ( a z , +b z ') 2. (11.20) Раскроем скобки в обеих сторонах этого уравнения. Перекрест­ные произведения дадут нам выражения типа (11.19), а суммы квадратов составляющих аи b— выражения (11.18). Инва­риантность слагаемых типа (11.18) приводит к инвариантности перекрестных произведений типа (11.19).

Величина а· bназывается скалярным произведением двух векторов аи bи имеет много интересных и полезных свойств. Например, легко доказать, что

а· ( b+ c)= а· b+ а· с. (11.21)

Есть еще очень простой геометрический способ вычисления а· b ,при котором не надо определять составляющих аи b; просто а· bесть произведение длин векторов аи bна ко­синус угла между ними. Почему? Предположим, что мы выбрали такую систему координат, в которой вектор а направлен вдоль оси х; в этом случае вектор а имеет единственную ненулевую составляющую а х , которая равна длине вектора а. Таким обра­зом, уравнение (11.19) сводится в этом случае к a · b = a x b x , что равно произведению длины вектора а на составляющую векто­ра b по направлению а, которая в свою очередь равна b cosq, т. е.

а· b= a b cosq.

Таким образом, в этой частной системе координат мы дока­зали, что a· bравно произведению длин векторов аи bна коси­нус угла между ними 9. Но если это верно в одной системе коор­динат, то это верно и во всех системах, потому что а· bне зависит от выбора системы координат.

Что хорошего может дать нам эта новая величина? Нужно ли физику скалярное произведение? Да, оно необходимо ему постоянно. Например, в гл. 4 мы назвали кинетической энер­гией величину 1 / 2 mv 2 , но если частица движется в простран­стве, то нужно возвести в квадрат отдельно составляющие ско­рости х, у и z , так что формулу для кинетической энергии можно записать в виде

к . э .= 1 / 2 m( v · v )= 1 / 2 m(v 2 x + v 2 y +v 2 z ). (11.22)

Энергия не имеет направления. Импульс же направление имеет, это — вектор, и он равен произведению массы на вектор ско­рости.

Другим примером скалярного произведения может служить работа, произведенная силой при перемещении какого-нибудь предмета с одного места на другое. Мы еще не дали определения работы, она равна изменению энергии, прибавке в весе, после того как сила Fпоработает вдоль пути s:

Работа= F· s. (11.23)

Иногда целесообразно говорить о составляющей вдоль опре­деленного направления (например, вдоль вертикали, потому что это направление силы тяжести). Для этого удобно ввести еди­ничный вектор вдоль интересующего нас направления. Под еди­ничным вектором мы будем понимать вектор, скалярное про­изведение которого на себя равно единице. Пусть это будет вектор i ;тогда i· i = l .Скалярное произведение i· aравно acosq, т. е. оно равно составляющей вектора авдоль направле­ния i. Это наилучший способ получить составляющую вектора. Поступая так, мы можем найти все составляющие вектора и получить забавную формулу.

Предположим, что нам задана какая-то система координат х, у и z . Введем три вектора: i— единичный вектор вдоль оси х,

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 1»

Представляем Вашему вниманию похожие книги на «Feynmann 1» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 1»

Обсуждение, отзывы о книге «Feynmann 1» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x