Тот факт, что ускорение — это скорость изменения вектора скорости, помогает найти ускорение в любых, казалось бы, трудных обстоятельствах. Предположим, например, что частица, двигаясь по какой-то сложной кривой (фиг. 11.7), имеет в момент t 1 скорость v 1, а несколько позже, в момент t 2 , скорость v 2. Чему равно ускорение? Ответ: ускорение равно разности скоростей, деленной на малый промежуток времени; значит, нужно знать разность скоростей. Как же найти эту разность? Чтобы найти разность двух векторов, проведем вектор через концы векторов v 2и v 1, иначе говоря, начертим вектор D в качестве разности этих двух векторов. Верно? Нет! Мы можем поступать так только тогда, когда начала векторов расположены в одной точке! Вычитать векторы, приложенные к разным точкам, бессмысленно. Остерегайтесь этого! Чтобы вычесть векторы, нужно начертить другую схему. На фиг. 11. 8 векторы v 1и v 2перенесены параллельно и равны их двойникам, изображенным на фиг. 11.7.

Фиг. 11 .7. Криволинейная траектория.

Фиг. 11.8, Диаграмма для вычисления ускорения.
Теперь можно поговорить об ускорении. Ускорение, конечно, просто равно Dv/Dt. Интересно заметить, что разность скоростей можно разделить на две части: можно представить себе, что ускорение состоит из двух составляющих: Dv ║— вектора, параллельного касательной к пути, и вектора Dv ┴, перпендикулярного к этой касательной. Эти векторы показаны на фиг. 11.8. Касательное к пути ускорение равно, естественно, лишь изменению длины вектора, т. е. изменению величины скорости v :
a ║=dv/dt. (11.15)
Другую, поперечную составляющую ускорения легко вычислить, взглянув на фиг. 11.7 и 11.8. За короткое время Dt изменение угла между v 1и v 2равно малому углу Dq. Если величина скорости равна v , то
Dv ┴=vDq, а ускорение а равно
а ┴=v(dq/dt).
Теперь нам нужно знать Dq/Dt. Эту величину можно найти так: если в данный момент кривую можно приблизительно заменить окружностью радиусом R, то, поскольку за время Dt частица пройдет расстояние s=vDt, изменение угла равно
Dq=v(Dt/R) или Dq/Dt=v/R.
Таким образом, как мы уже установили ранее,
a=v 2/R. (11.16)
§ 7. Скалярное произведение векторов

Давайте еще немного займемся свойствами векторов. Легко понять, что длина шага в пространстве одинакова во всех координатных системах. Следовательно, если какому-то шагу r соответствуют составляющие х, у, z в одной системе координат и составляющие х', у', z ' в другой системе, то расстояние r= |r| одно и то же в обеих системах. Сначала мы, конечно, должны ввести два расстояния
а затем проверить, что эти обе величины равны. Чтобы не возиться с квадратным корнем, будем сравнивать квадраты расстояний. Мы должны, таким образом, показать, что
x 2 +у 2 + z 2 = x ' 2 +у' 2 + г ' 2 . (11.17)
Подставив в это уравнение определяемые соотношением (11.5) значения ж', у', z ' , мы увидим, что это действительно так. Значит, кроме уже изученных нами векторных уравнений, существуют еще какие-то соотношения, верные в любой системе координат.
Незаметно мы получили новый тип величин. Мы можем построить функцию х, у и z, называемую скалярной функцией,— величину, которая не имеет направления, и одинакова в обеих системах координат. Из вектора можно построить скаляр. Хорошо бы найти общее правило для этого построения. Собственно говоря, мы уже нашли это правило: надо возвести в квадрат каждую из составляющих вектора и сложить их. Определим теперь новую величину, которую обозначим а· а. Это не вектор, а скаляр; это число, одинаковое во всех координатных системах и определяемое как сумма квадратов трех составляющих вектора:
a· a=a 2 x+ a 2 y+a 2 z. (11.18)
Вы спросите: «В какой системе координат?» Но раз это число не зависит от системы координат, то ответ одинаков в любой системе координат. Мы имеем дело с новым видом величины, с инвариантом, или скаляром, полученным «возведением вектора в квадрат». Если теперь определить, исходя из векторов аи b, величину
Читать дальше