Конечно, с экспериментальной (а не математической) точки зрения вам нужно знать, применимы ли законы Евклида к тому роду геометрии, которую вы используете, измеряя окрестности; вы предполагаете, что да, применимы. И, действительно, они прекрасно работают; прекрасно, но не точно, потому что ваши съемочные линии— это не настоящие геометрические линии. Приложимы или нет абстрактные евклидовы прямые к линиям, провешиваемым на опыте,— есть дело самого опыта; на этот вопрос чистым рассуждением не ответить.
Точно таким же образом вы не можете назвать F=ma определением, вывести из него все чисто математически и сделать механику математической теорией: механика — это описание природы. Выдвигая подходящие постулаты, всегда можно создать математическую систему вроде евклидовой, но вы не можете создать математики мира; рано или поздно вам пришлось бы отвечать на вопрос: выполняются ли эти аксиомы на объектах природы? И вы немедленно завязли бы среди этих запутанных, «нечистых» реальных предметов,— правда, добиваясь все большей и большей точности приближений.
§ 2. Трение
Итак, чтобы по-настоящему понять законы Ньютона, мы должны обсудить свойства сил; цель этой главы— начать это обсуждение и составить своего рода дополнение к законам Ньютона. Мы уже знакомы со свойствами ускорения и с другими сходными представлениями, теперь же нам предстоит заняться свойствами сил. Из-за сложности их мы в этой главе (в отличие от прежних) не будем гнаться за точными формулировками. Чтобы начать с конкретной силы, рассмотрим сопротивление, которое воздух оказывает летящему самолету. Каков закон этой силы? (Мы обязаны найти его; ведь закон существует для каждой силы!) Едва ли только он будет прост. Стоит представить себе торможение воздухом самолета — свист ветра в крыльях, вихри, порывы, дрожание фюзеляжа и множество других сложностей,— чтобы понять, что этот закон вряд ли выйдет простым и удобным. Тем замечательней тот факт, что у силы очень простая закономерность: F » cv 2 (постоянная, умноженная на квадрат скорости).
Каково же положение этого закона среди других? Подобен ли он закону F=ma? Отнюдь. Во-первых, он эмпирический, и получен он грубыми измерениями в аэродинамической трубе. Но вы возразите: «Что ж, закон F=ma тоже мог бы быть эмпирическим». Но разве в этом дело? Различие не в эмпиричности, а в том, что, насколько мы понимаем, этот закон трения есть результат множества влияний и в основе своей ничуть не прост. Чем больше мы станем его изучать, чем точнее мерить, тем сложней (а не проще) представится он нам. Иными словами, все глубже вникая в закон торможения самолета, мы все ясней будем понимать его «фальшь». Чем глубже взгляд, чем аккуратней измерения, тем усложненной становится истина; она не предстанет перед нами как итог простых фундаментальных процессов (впрочем, мы и с самого начала об этом догадывались). На очень слабых скоростях (самолету, например, они даже недоступны) закон меняется: торможение уже зависит от скорости почти линейно. Или, к примеру, торможение шара (или пузырька воздуха или чего-нибудь еще) за счет трения о вязкую жидкость (наподобие меда),— оно тоже при малых скоростях пропорционально скорости, а на больших, когда образуются вихри (не в меде, конечно, а в воде или воздухе), опять возникает примерная пропорциональность квадрату скорости ( F = cv 2 ); при дальнейшем росте скорости и это правило не годится. Можно, конечно, говорить: «Ну, здесь слегка меняется коэффициент». Но ведь это просто уловка.
Во-вторых, есть и другие сложности: можно ли, скажем, эту силу делить на части, — на силу трения крыльев, фюзеляжа, хвоста и т. д.? Конечно, когда нужно бывает узнать вращательные моменты, действующие на части самолета, то так делать можно, но тогда уж надо иметь специальный закон трения для крыльев и т. д. И выясняется тот удивительный факт, что сила, действующая на крыло, зависит от другого крыла, т. е. если убрать самолет и оставить в воздухе одно крыло, то сила будет совсем не такой, какой она была бы, если бы в воздухе был весь самолет, Причина, конечно, в том, что ветер, бьющий в нос самолета, стекает на крылья и меняет силу торможения. И хотя кажется чудом, что существует такой простой, грубый эмпирический закон, пригодный для создания самолетов, но он не из тех законов физики, которые называют основными: по мере углубления он становится все сложней и сложней. Какое-нибудь изучение зависимости коэффициента c от формы носа самолета сразу разрушает его простоту. Никакой простой зависимости не остается. То ли дело — закон тяготения: он прост, и дальнейшее его углубление только подчеркивает это.
Читать дальше