Александр Власкин - Глоссариум по искусственному интеллекту - 2500 терминов

Здесь есть возможность читать онлайн «Александр Власкин - Глоссариум по искусственному интеллекту - 2500 терминов» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. ISBN: , Жанр: Руководства, Прочая околокомпьтерная литература, Прочая научная литература, Технические науки, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Глоссариум по искусственному интеллекту: 2500 терминов: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Глоссариум по искусственному интеллекту: 2500 терминов»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Дорогой читатель!Твоему вниманию предлагается уникальная книга!Современный глоссарий из более чем 2500 популярных терминов и определений по машинному обучению и искусственному интеллекту.Эта книга уникальна еще и тем, что ее писали эксперты-практики, которые работали вместе над Программой Центра искусственного интеллекта МГТУ им. Н. Э. Баумана, программами «Искусственный интеллект» и «Глубокая аналитика» проекта «Приоритет 2030» МГТУ им. Н. Э. Баумана в 2021—2022 годах.

Глоссариум по искусственному интеллекту: 2500 терминов — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Глоссариум по искусственному интеллекту: 2500 терминов», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Методы эвристического поиска Heuristic search techniques это методы - фото 14

Методы эвристического поиска (Heuristic search techniques) – это методы, которые сужают поиск оптимальных решений проблемы за счет исключения неверных вариантов

Методы эвристического поиска( Heuristic search techniques) – это методика, которая сужает поиск оптимальных решений проблемы, исключая неверные варианты. [ 53 53 Методы эвристического поиска [Электронный ресурс] //intuit.ru URL: https://intuit.ru/studies/professional_skill_improvements/1574/courses/507/lecture/ (дата обращения: 07.07.2022) ]

Метрика (Metric) – этофункция в задачах машинного обучения для оценки качества моделей и сравнения различных алгоритмов машинного обучения. [ 54 54 Метрика [Электронный ресурс] www.machinelearningmastery.ru URL: https://www.machinelearningmastery.ru/20-popular-machine-learning-metrics-part-1-classification-regression-evaluation-metrics-1ca3e282a2ce/ (дата обращения: 07.07.2022) ]

Метрика справедливости (Fairness metric) – это математическое определение «справедливости», которое поддается измерению. Многие показатели справедливости являются взаимоисключающими.

Метрики API(Application Programming Interface или интерфейс программирования приложений) (tf. metrics) TensorFlow – это функция для оценки моделей. Например, tf.metrics.accuracy определяет, как часто прогнозы модели соответствуют меткам.

Механизм внимания (Attention mechanism) – это одно из ключевых нововведений в области нейронного машинного перевода. Внимание позволило моделям нейронного машинного перевода превзойти классические системы машинного перевода, основанные на переводе фраз. Основным узким местом в sequence-to-sequence обучении является то, что все содержимое исходной последовательности требуется сжать в вектор фиксированного размера. Механизм внимания облегчает эту задачу, так как позволяет декодеру оглядываться на скрытые состояния исходной последовательности, которые затем в виде средневзвешенного значения предоставляются в качестве дополнительных входных данных в декодер.

Механизм логического вывода( Inference engine) – это составная часть системы, которая применяет логические правила к базе знаний, чтобы вывести новую информацию. Первые механизмы вывода были компонентами экспертных систем. Типичная экспертная система состоит из базы знаний и механизма вывода. В базе знаний хранятся факты об окружающем мире. Механизм вывода применяет логические правила к базе знаний и выводит новые знания. [ 55 55 Механизм логического вывода [Электронный ресурс] //ru.wikipedia.org URL: https://ru.wikipedia.org/wiki (дата обращения: 07.07.2022) ]

Мехатроника (Mechatronics) –это наука, которая существует на стыке механики, электроники, машиностроения, вычислительной техники и электронного управления. Это одна из наиболее динамично развивающихся областей техники и науки. Слово «мехатроника» был введен в техническую терминологию японской компанией Yaskawa Elektric Corporation в 1969 году (компания, основанная в 1915 г.) и с 1971 г. охраняется как торговое наименование.

Микроданные (Microdata) – это файлы, которые содержат информацию об отдельных лицах, а не агрегированные данные. «Сводные файлы» Бюро переписи населения США содержат совокупные данные и состоят из общего числа лиц с различными указанными характеристиками в определенной географической области. Это, в некотором смысле, таблицы итогов. Однако файлы Бюро PUMS (выборка микроданных для общественного пользования) содержат данные из исходного инструмента обследования переписи, при этом определенная информация удалена для защиты анонимности респондента.

Минимаксные потери( Minimax loss) – это функция потерь в машинном обучении для порождающих состязательных сетей, основанная на перекрестной энтропии между распределением сгенерированных данных и реальными данными. Минимакс является алгоритмом принятия решений в области искусственного интеллекта, теории принятия решений, теориях игр, статистике и философии для минимизации возможных потерь. [ 56 56 Минимаксные потери [Электронный ресурс] //mcs.mail.ru URL: https://dev.abcdef.wiki/wiki/Minimax (дата обращения: 07.07.2022) ]

Минимизация структурных рисков (Structural risk minimization, SRM) – это индуктивный принцип использования в машинном обучении. Обычно в машинном обучении обобщенная модель должна быть выбрана из конечного набора данных, что приводит к проблеме переобучения – модель становится слишком строго адаптированной к особенностям обучающего набора и плохо обобщается для новых данных. Принцип SRM решает эту проблему, уравновешивая сложность модели с ее успехом в подборе обучающих данных. Этот принцип был впервые изложен в статье 1974 года Владимира Вапника и Алексея Червоненкиса.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Глоссариум по искусственному интеллекту: 2500 терминов»

Представляем Вашему вниманию похожие книги на «Глоссариум по искусственному интеллекту: 2500 терминов» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Глоссариум по искусственному интеллекту: 2500 терминов»

Обсуждение, отзывы о книге «Глоссариум по искусственному интеллекту: 2500 терминов» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x