Мета-обучение (Meta-learning) –является одним из наиболее активных направлений исследований в области глубокого обучения, подмножеством машинного обучения, которое обнаруживает или улучшает алгоритм обучения. Система мета-обучения также может быть направлена на обучение модели быстрому освоению новой задачи на основе небольшого объема данных или опыта, полученного в предыдущих задачах. В контексте систем ИИ, метаобучение можно определить, как способность приобретать универсальность знаний. Путь к универсальности знаний предполагает от агентов ИИ «Учиться учиться». Основные типы метаобучающихся моделей: Мета-обучение несколько выстрелов; Оптимизатор мета-обучения; Метрическое мета-обучение; Рекуррентная модель мета-обучения [ 50 50 Мета-обучение [Электронный ресурс] www.machinelearningmastery.ru URL: https://www.machinelearningmastery.ru/learning-to-learn-a-gentle-introduction-to-meta-learning-4befb76da91a/ (дата обращения: 07.07.2022)
].
Метаэвристика (Metaheuristic) –это процедура и эвристика более высокого уровня, предназначенная для поиска, генерации или эвристики, которая может обеспечить достаточно хорошее решение задачи оптимизации, особенно при неполной или несовершенной информации, или ограниченной вычислительной мощности. Метаэвристика отбирает подмножество решений, которое в другом случае слишком велико, чтобы его можно было полностью перечислить или исследовать каким-либо иным образом.
Метка или разметка( Label) – это разметка данных перед тем, как их использовать в системах машинного обучения. Эти метки могут быть в виде слов или цифр. Чтобы сделать данные понятными или в удобочитаемой форме, обучающие данные часто помечаются метками – словами.
Метод k-средних( K-means) – это наиболее популярный метод кластеризации. Был изобретён в 1950-х годах математиком Гуго Штейнгаузом и почти одновременно Стюартом Ллойдом. Кластеризация K-средних один из самых простых и популярных алгоритмов машинного обучения без учителя. Как правило, неконтролируемые алгоритмы делают выводы из наборов данных, используя только входные векторы, не обращаясь к известным или помеченным результатам.
Метод Монте-Карло (Monte Carlo Methods) – этометод многократного имитационного моделирования вероятностей, представляет собой математический метод, с помощью которого можно оценить возможные результаты неопределенного события. Метод Монте-Карло был изобретен Джоном фон Нейманом и Станиславом Уламом во время Второй мировой войны с целью улучшения процесса принятия решений в условиях неопределенности. Название методу дал известный своими казино город в Монако, поскольку в основе данного подхода к моделированию лежит принцип генерации случайных чисел, применяемый в рулетке.
Метод обратного распространения ошибки (Error backpropagation) – это метод вычисления градиента, который используется при обновлении весов многослойного перцептрона. Впервые метод был описан в 1974 г. А. И. Галушкиным. Метод включает в себя большое количество итерационных циклов с обучающими данными.
Метод ядра( Kernel method). В машинном обучении – этот метод представляет собой класс алгоритмов для анализа шаблонов, наиболее известным из которых является машина опорных векторов (SVM). Общая задача анализа шаблонов состоит в том, чтобы найти и изучить общие типы отношений (например, кластеры, ранжирование, главные компоненты, корреляции, классификации) в наборах данных.
Метод COBWEB( COBWEB) – это классический метод инкрементальной концептуальной кластеризации, который был изобретен профессором Дугласом Фишером в 1987 году. В отличие от традиционной кластеризации, которая обнаруживает группы схожих объектов на основе меры сходства между ними, концептуальная кластеризация определяет кластеры как группы объектов, относящейся к одному классу или концепту – определённому набору пар «атрибут-значение». Алгоритм COBWEB создаёт иерархическую кластеризацию в виде дерева классификации: каждый узел этого дерева ссылается на концепт и содержит вероятностное описание этого концепта.
Методология разработки и операции (DevOps development & operations) – это набор методик, инструментов и философия культуры, которые позволяют автоматизировать и интегрировать между собой процессы команд разработки ПО и ИТ-команд. Особое внимание в DevOps уделяется расширению возможностей команд, их взаимодействию и сотрудничеству, а также автоматизации технологий. Под термином DevOps также понимают особый подход к организации команд разработки. Его суть в том, что разработчики, тестировщики и администраторы работают в едином потоке – не отвечают каждые за свой этап, а вместе работают над выходом продукта и стараются автоматизировать задачи своих отделов, чтобы код переходил между этапами без задержек. В DevOps ответственность за результат распределяется между всей командой [ 51 51 Методология разработки и операции ps [Электронный ресурс] www.atlassian.com URL: https://www.atlassian.com/ru/devops (дата обращения: 07.07.2022)
, 52 52 Методология разработки и операции [Электронный ресурс] //mcs.mail.ru URL: https://mcs.mail.ru/blog/chto-takoe-metodologiya-devops (дата обращения: 07.07.2022)
].
Читать дальше