Матричная факторизация (Matrix factorization) –это разложение одной матрицы на производные нескольких матриц. Существует множество различных способов факторизации матриц. Многие сложные матричные операции не могут быть решены эффективно или стабильно с использованием ограниченной точности компьютеров. Разложение матриц на составные части упрощает вычисление более сложных матричных операций.
Машина Больцмана (Boltzmann machine) – это вид стохастической рекуррентной нейронной сети, изобретенной Джеффри Хинтоном и Терри Сейновски. Машина Больцмана может рассматриваться как стохастический генеративний вариант сети Хопфилда. Эта модель оказалась первой нейронной сетью, способной обучаться внутренним репрезентациям, и может представлять и решать сложные комбинаторные задачи.
Машина опорных векторов (Support Vector Machine) – это популярная модель обучения с учителем, разработанная Владимиром Вапником и используемая как для классификации данных, так и для регрессии. Тем не менее, он обычно используется для задач классификации, построения гиперплоскости, где расстояние между двумя классами точек данных максимально. Эта гиперплоскость известна как граница решения, разделяющая классы точек данных по обе стороны от плоскости.
Машина повышения градиента (Gradient boost machine) – это тип метода машинного обучения, в котором используется ансамбль слабых моделей прогнозирования для выполнения задач регрессии и классификации.
Машина Тьюринга( Turing machine) – это математическая модель вычислений, определяющая абстрактную машину, которая манипулирует символами на полосе ленты в соответствии с таблицей правил. Несмотря на простоту модели, для любого компьютерного алгоритма можно построить машину Тьюринга, способную имитировать логику этого алгоритма.
Машинное восприятие (Machine perception) – это способность системы получать и интерпретировать данные из внешнего мира аналогично тому, как люди используют наши органы чувств. Обычно это делается с подключенным оборудованием, хотя можно использовать и программное обеспечение.
Машинное зрение (Machine Vision) – это применение общего набора методов, позволяющих компьютерам видеть, для промышленности и производства.
Машинное обучение (Machine Learning) – это область исследования, которая дает компьютерам возможность учиться без явного программирования [ 46 46 Машинное обучение [Электронный ресурс] // en.wikipedia.org. URL: https://en.wikipedia.org/wiki/Arthur_Samuel (дата обращения: 14.01.2022)
, 47 47 Машинное обучение [Электронный ресурс] // datascience.stackexchange.com. URL: https://datascience.stackexchange.com/questions/37078/source-of-arthur-samuels-definition-of-machine-learning (дата обращения: 14.01.2022)
]. Также под машинным обучением понимают технологии автоматического обучения алгоритмов искусственного интеллекта распознаванию и классификации на тестовых выборках объектов для повышения качества распознавания, обработки и анализа данных, прогнозирования [ 48 48 Технологии искусственного интеллекта. [текст].– Москва: Агентство промышленного развития Москвы, 2019.-155 с. [Электронный ресурс] // apr.moscow. URL: https://apr.moscow/analitics/promyshlennost-moskvy (дата обращения: 02.02.2022).
]. Также машинное обучение определяют, как одно из направлений (подмножеств) искусственного интеллекта, благодаря которому воплощается ключевое свойство интеллектуальных компьютерных систем – самообучение на основе анализа и обработки больших разнородных данных. Чем больше объем информации и ее разнообразие, тем проще искусственному интеллекту найти закономерности и тем точнее будет получаемый результат.
Машинное обучение Microsoft Azure (платформа автоматизации искусственного интеллекта) – это функция, которая предлагает расширенную облачную аналитику, предназначенную для упрощения машинного обучения для бизнеса. Бизнес-пользователи могут моделировать по-своему, используя лучшие в своем классе алгоритмы из пакетов Xbox, Bing, R или Python или добавляя собственный код R или Python. Затем готовую модель можно за считанные минуты развернуть в виде веб-службы, которая может подключаться к любым данным в любом месте. Его также можно опубликовать для сообщества в галерее продуктов или на рынке машинного обучения. В Machine Learning Marketplace доступны интерфейсы прикладного программирования (API) и готовые сервисы. Также, – это способность машин автоматизировать процесс обучения. Входными данными этого процесса обучения являются данные, а выходными данными – модель. Благодаря машинному обучению система может выполнять функцию обучения с данными, которые она принимает, и, таким образом, она становится все лучше в указанной функции.
Читать дальше