Машинное прослушивание( Machine listening) – это класс прикладного искусственного интеллекта, используемый для восприятия звука, понятного машинам.
Машинный интеллект (Machine intelligence) —это раздел компьютерных наук, занимающийся воспроизведением или имитацией человеческого интеллекта, самосознания, знаний, мышления в компьютерных программах. Это также обобщающий термин для различных типов алгоритмов обучения, включая машинное обучение и глубокое обучение.
Машинный перевод (Machine Translation) –это раздел компьютерной лингвистики, с использованием программного обеспечения для перевода текста или речи с одного языка на другой. [ 49 49 Машинный перевод [Электронный ресурс] //towardsdatascience.com URL: https://towardsdatascience.com/machine-translation-a-short-overview-91343ff39c9f (дата обращения: 07.07.2022)
]
Машинный разум (Machine intelligence) – это общий термин, охватывающий машинное обучение, глубокое обучение и классические алгоритмы обучения.
Машины опорных векторов или сети опорных векторов (Support-vector machines, Support-vector networks) – это контролируемые модели обучения с соответствующими алгоритмами обучения, которые анализируют данные для классификации и регрессионного анализа. Разработаны в AT&T Bell Laboratories Владимиром Вапником с коллегами в 1992 году. Машины опорных векторов являются одним из самых надежных методов прогнозирования, основанным на статистическом обучении или теории теории Вапника – Червоненкиса, предложенной Вапником (1982, 1995) и Червоненкисом (1974). Учитывая набор обучающих примеров, каждый из которых помечен как принадлежащий к одной из двух категорий, алгоритм обучения машины опорных векторов строит модель, которая относит новые примеры к той или иной категории, превращая ее в невероятностный двоичный линейный классификатор (хотя методы такие как масштабирование Платта, существуют для использования машин опорных векторов в вероятностной классификации). Машины опорных векторов сопоставляют обучающие примеры с точками в пространстве, чтобы максимизировать ширину разрыва между двумя категориями. Затем новые примеры сопоставляются с тем же пространством, и их принадлежность к категории определяется в зависимости от того, на какую сторону разрыва они попадают. В дополнение к выполнению линейной классификации SVM могут эффективно выполнять нелинейную классификацию, используя так называемый трюк ядра, неявно отображая свои входные данные в многомерные пространства признаков. Когда данные не размечены, обучение с учителем невозможно, и требуется подход к обучению без учителя, который пытается найти естественную кластеризацию данных в группы, а затем сопоставляет новые данные с этими сформированными группами. Алгоритм кластеризации опорных векторов, созданный Хавой Зигельманн и Владимиром Вапником, применяет статистику опорных векторов, разработанную в алгоритме машин опорных векторов, для категоризации неразмеченных данных.
Международный фонетический алфавит (МФА) ((PA (International Phonetic Alphabet)) – это система фонетической записи, основанная на латинском алфавите, разработанная Международной фонетической ассоциацией в качестве стандартизированного представления звуков разговорной речи.
Мероприятия по информатизации (Informatization activities) – это предусмотренные мероприятия программ цифровой трансформации государственных органов, направленные на создание, развитие, эксплуатацию или использование информационно-коммуникационных технологий, а также на вывод из эксплуатации информационных систем и компонентов информационно-телекоммуникационной инфраструктуры.
Мероприятия программы цифровой трансформации, осуществляемые государственным органом (Measures of the digital transformation program carried out by a state body) – это объединенная единой целью совокупность действий государственного органа, в том числе мероприятий по информатизации, направленных на выполнение задач по оптимизации административных процессов предоставления государственных услуг и (или) исполнения государственных функций, созданию, развитию, вводу в эксплуатацию, эксплуатации или выводу из эксплуатации информационных систем или компонентов информационно-коммуникационных технологий, нормативно-правовому обеспечению указанных процессов или иных задач, решаемых в рамках цифровой трансформации.
Метаданные (Metadata) – это термин, который относится к структурированным данным. Метаданные – это старая концепция (например, карточные каталоги и указатели), но метаданные часто необходимы для того, чтобы цифровой контент был полезным и значимым. Метаданные могут собирать общую или конкретную информацию о цифровом контенте, которая может определять административные, технические или структурные характеристики цифрового контента. «Метаданные сохранения» – это термин для более широкого набора метаданных, которые документируют жизненный цикл цифрового контента от создания до обработки, хранения, сохранения и использования с течением времени. Сохранение метаданных требуется на совокупном уровне (например, на уровне коллекции и исследования) и на уровне элемента (например, на уровне файла и переменной). Например, все действия по сохранению, применяемые к цифровому контенту с течением времени, должны фиксироваться в метаданных сохранения. Словарь данных «Стратегии внедрения метаданных сохранения» (PREMIS) – это разработка сообщества цифрового сохранения, которая движется к тому, чтобы стать стандартом. Существуют дополнительные специфичные для формата (например, словарь данных неподвижных изображений NISO) и другие стандарты, определяющие дополнительные метаданные для сохранения. ICPSR подготавливает запись метаданных для каждой коллекции данных, и мы представляем доступную для поиска базу данных записей метаданных на нашем общедоступном веб-сайте. ICPSR определил набор элементов метаданных на уровне файлов для сохранения. Инициатива ICPSR по улучшению процессов включает идентификацию метаданных на каждом этапе конвейера.
Читать дальше