Минимизация эмпирического риска (МЭР) (Empirical risk minimization) – это принцип статистической теории обучения, который определяет семейство обучающихся алгоритмов и который задаёт теоретические границы результативности.
Мини-пакет( Mini-batch) – это разбиение большого объема данных для обучения на пакеты, каждый из которых называется мини-пакетом, для дальнейшей пакетной обработки. Размер мини-пакета обычно составляет от 10 до 1000 единиц. Гораздо эффективнее вычислять потери по мини-пакету, чем по полным данным обучения.
Мини-пакетный градиентный спуск (Mini-batch stochastic gradient descent) – этометод оптимизации, используемый для вычисления параметров модели (коэффициентов и смещения) для таких алгоритмов, как линейная регрессия, логистическая регрессия, нейронные сети и т. д. Мини-пакетный градиентный спуск – оптимальное, сбалансированное решение между надежностью стохастического градиентного спуска и эффективностью пакетного градиентного спуска. Это наиболее распространенная реализация градиентного спуска, используемая в области глубокого обучения.
Многозадачное обучение (Multitask learning) – это общий подход, при котором модели обучаются выполнению различных задач на одних и тех же параметрах. В нейронных сетях этого можно легко добиться, связав веса разных слоев. Идея многозадачного обучения была впервые предложена Ричем Каруаной в 1993 году и применялась для прогнозирования пневмонии, а также для создания системы следования дороге на беспилотных устройствах (Каруана, 1998). Фактически при многозадачном обучении модель стимулируют к созданию внутри себя такого представления данных, которые позволяет выполнить сразу много задач. Это особенно полезно для обучения общим низкоуровневым представлениям, на базе которых потом происходит «концентрация внимания» модели или в условиях ограниченного количества обучающих данных. Многозадачное обучение нейросетей для обработки естественного языка было впервые применено в 2008 году Коллобером и Уэстоном (Collobert & Weston, 2008) [ 57 57 Многозадачное обучение [Электронный ресурс] // https://ai-news.ru. URL: https://ai-news.ru/2019/07/8_glavnyh_proryvov_v_nejrosetevom_nlp.html (дата обращения: 04.08.2022)
].
Многоклассовая логистическая регрессия (также называемая полиномиальной логистической регрессией) ( Multi-class logistic regression) – это алгоритм бинарной логистической регрессии (два класса) расширенной на многоклассовые случаи. В мультиклассовой логистической регрессии классификатор можно использовать для прогнозирования нескольких результатов.
Многомерная система (Multidimensional system)или м-Д система – это система, в которой существует не только одна независимая переменная (как время), а несколько независимых переменных.
Многослойная нейронная сеть (многослойный персептрон) (Multilayer neural network) –это сети, в которых нейроны сгруппированы в слои. При этом каждый нейрон предыдущего слоя связан со всеми нейронами следующего слоя, а внутри слоёв связи между нейронами отсутствуют. Слои нумеруются слева направо. Первый слой называют входным или распределительным. Его нейроны (которые также называют входными) принимают элементы вектора признаков и распределяют их по нейронам следующего слоя. При этом обработка данных во входном слое не производится. Последний слой называется выходным. На выходах его нейронов (они называются выходными) формируется результат работы сети – элементы выходного вектора. Между входным и выходным слоем располагаются один или несколько промежуточных или скрытых слоёв. Скрытыми они называются по тому, что их входы и выходы неизвестны для внешних по отношению к нейронной сети программам и пользователю. [ 58 58 Многослойная нейронная сеть [Электронный ресурс] //wiki.loginom.ru URL: https://wiki.loginom.ru/articles/multilayer-neural-net.html (дата обращения: 07.07.2022)
]
Многослойный персептрон (МЛП, Multilayer Perceptrons, MLP)) – это одна из наиболее распространенных моделей нейронных сетей, разновидность искусственной нейронной сети используемых в области глубокого обучения и состоящей как минимум из трех слоев узлов: входного слоя, скрытого слоя и выходного слоя. МЛП, которую часто называют «ванильной» нейронной сетью, проще, чем сложные современные модели.
Мобильное здравоохранение (Mobile healthcare, mHealth) – это ряд мобильных технологий, систем, сервисов и приложений, установленных на мобильных устройствах и использующихся в медицинских целях и для обеспечения здорового образа жизни человека и мотивации людей к здоровому образу жизни и формированию новой «цифровой» культуры здоровья.
Читать дальше