Александр Власкин - Глоссариум по искусственному интеллекту - 2500 терминов

Здесь есть возможность читать онлайн «Александр Власкин - Глоссариум по искусственному интеллекту - 2500 терминов» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. ISBN: , Жанр: Руководства, Прочая околокомпьтерная литература, Прочая научная литература, Технические науки, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Глоссариум по искусственному интеллекту: 2500 терминов: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Глоссариум по искусственному интеллекту: 2500 терминов»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Дорогой читатель!Твоему вниманию предлагается уникальная книга!Современный глоссарий из более чем 2500 популярных терминов и определений по машинному обучению и искусственному интеллекту.Эта книга уникальна еще и тем, что ее писали эксперты-практики, которые работали вместе над Программой Центра искусственного интеллекта МГТУ им. Н. Э. Баумана, программами «Искусственный интеллект» и «Глубокая аналитика» проекта «Приоритет 2030» МГТУ им. Н. Э. Баумана в 2021—2022 годах.

Глоссариум по искусственному интеллекту: 2500 терминов — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Глоссариум по искусственному интеллекту: 2500 терминов», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Модальность (Modality) – этофункционально-семантическая категория, выражающая отношение высказывания к действительности, способ существования объекта или протекания явления либо способ понимания, суждения об объекте или явлении способ организации многооконного интерфейса программы, при котором одно из окон монопольно владеет фокусом пользовательского внимания способ образования ладов (модусов) на основе общего звукоряда путём перемещения. Категория данных высокого уровня. [ 59 59 Модальность [Электронный ресурс] //vslovarike.ru URL: https://vslovarike.ru/ (дата обращения: 07.07.2022) ]

Модель (Model)применительно к машинному обучению – это файл, обученный распознавать определенные типы шаблонов. Вы обучаете модель на наборе данных, предоставляя ей алгоритм, который она может использовать для рассуждений и извлечения уроков из этих данных. После того, как вы обучили модель, вы можете использовать ее для анализа данных, которые она раньше не видела, и делать прогнозы относительно этих данных.

Модель LaMDA( LaMDA) – это языковая модель для диалоговых приложений, новая технология Google для обработки диалоговой речи. модель LaMDA разработана Google как открытое приложение для разговорного ИИ. Она берет на себя роль человека или аватара во время разговоров с пользователями.

Модель вероятностной регрессии( Probabilistic regression model) – это модель регрессии, в которой используются не только веса для каждого признака, но и неопределенность этих весов. Модель вероятностной регрессии генерирует прогноз и неопределенность этого прогноза.

Модель классификации (Classification model) – это тип модели машинного обучения для различения двух или более дискретных классов. Например, модель классификации обработки естественного языка может определить, было ли входное предложение французским, испанским или итальянским.

Модель мешка слов (Bag-of-words model) – это упрощающее представление, используемое при обработке естественного языка и поиске информации (IR). В этой модели текст (например, предложение или документ) представляется в виде набора (мультимножества) его слов без учета грамматики и даже порядка слов, но с сохранением множественности. Модель мешка слов также использовалась для компьютерного зрения. Модель мешка слов обычно используется в методах классификации документов, где (частота) появления каждого слова используется в качестве признака для обучения классификатора.

Модель мешка слов в компьютерном зрении (Bag-of-words model in computer vision) – в компьютерном зрении эту модель (модель BoW) можно применять для классификации изображений, рассматривая признаки изображения как слова. В классификации документов набор слов представляет собой разреженный вектор количества встречаемости слов; то есть разреженная гистограмма по словарному запасу. В компьютерном зрении набор визуальных слов представляет собой вектор количества встречаемости словаря локальных признаков изображения.

Модель от последовательности к последовательности (Sequence-to-sequence model, seq2seq).Самая популярная задача на последовательность – это перевод: обычно с одного естественного языка на другой. За последние пару лет коммерческие системы стали на удивление хороши в машинном переводе – взгляните, например, на Google Translate, Yandex Translate, DeepL Translator, Bing Microsoft Translator. Сегодня мы узнаем об основной части этих систем.

Модель последовательности( Sequence model) – это модель, входы которой имеют последовательную зависимость. Например, предсказание следующего видео, просмотренного на основе последовательности ранее просмотренных видео.

Модель регрессии( Regression model) – это тип модели, которая выводит непрерывные значения (обычно с плавающей запятой).

Модель убеждений, желаний и намерений (Belief-desire-intention software model) – это модель программирования интеллектуальных агентов. Образно модель описывает убеждения, желания и намерения каждого агента, однако непосредственно применительно к конкретной задаче агентного программирования. По сути, модель предоставляет механизм позволяющий разделить процесс выбора агентом плана (из набора планов или внешнего источника генерации планов) от процесса исполнения текущего плана, выбранного ранее. Как следствие, агенты, повинующиеся данной модели способны уравновешивать время, затрачиваемое ими на выбор и отсеивание будущих планов со временем исполнения выбранных планов. Процесс непосредственного синтеза планов (планирование) в модели не описывается и остаётся на откуп программного дизайнера или программиста.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Глоссариум по искусственному интеллекту: 2500 терминов»

Представляем Вашему вниманию похожие книги на «Глоссариум по искусственному интеллекту: 2500 терминов» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Глоссариум по искусственному интеллекту: 2500 терминов»

Обсуждение, отзывы о книге «Глоссариум по искусственному интеллекту: 2500 терминов» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x