Петър Копанов
Математиката през 20 век
За повечето естествени науки може лесно да се прецени как са се развивали през определен период от време. Резултатите от тях се виждат от обществото и лесно могат да бъдат оценени. За химията например — по новите материали, създадени през съответния период. За физиката — по новите явления. За техниката — по новите машини и т.н. Не така стои въпросът с математиката. Тя винаги е стояла някак отделно от другите природни науки. Тя сама не създава нови продукти и технологии, които да бъдат пред очите на хората. Нещо повече, самата математика е някак недействителна — човек не може да я види, чуе, пипне. Сякаш съществува само в съзнанието на хората. Въпреки това тя е нещо съвсем реално и оказва влияние върху повечето човешки дейности. Възниква обаче въпросът — как да оценим развитието на тази наука, която сама не създава реални обекти и дори не работи с такива. Без реална оценка за развитието, перспективите и приложението на дадена наука трудно може да се разчита че обществото ще я поддържа. И така — как се развиваше математиката през отминалия 20 век? Има поне два достатъчно разумни подхода в опита да се отговори на този въпрос: единият е какво влияние е оказала математиката на другите области на човешкото познание, другият е да се посочат и оценят постиженията на самата математика. В тази статия ще се спрем на втория подход. Той е по-труден, тъй като тези постижения не съществуват като реални обекти. Този проблем стои пред математиците от много време и е източник на много спорове и спекулации по темата — включително и до пълното отричане на математиката като наука!
Другата крайност е, че математиката е с божествен произход и е достъпна само за богоизбрани. Ще отбележим само, че и двете крайности „не вършат работа“ и поради това ще ги оставим без коментар.
И така, как да оценим развитието на математиката през 20 век? За щастие имаме нелоша отправна точка. На Международния конгрес на математиците, проведен в Париж през 1900 година, един от най-големите измежду тях, Давид Хилберт, предлага на вниманието на своите колеги 23 проблема, които да бъдат решени до 2000 година. Докладът му, озаглавен „Математически проблеми“ е прочетен на 8 август 1900 година. Този доклад е уникално явление в историята на математиката и математическата литература. Нито преди, нито след това математиците не са правили съобщения или доклади, обхващащи проблемите на математиката като цяло. Днес, сто години по-късно, докладът на Хилберт представлява удобна отправна точка за равносметка. По-долу ще се спрем накратко на съдържанието му.
Докладът започва с обща част, в която се разсъждава не само за значението на „добре поставената“ специална задача, но и се изказват разсъждения за математическата строгост, за връзката на математиката с естествените науки. В заключение Хилберт с голяма убеденост формулира основния си тезис — „аксиомата“ за разрешимост в широк смисъл на всяка математическа задача — тезис, съдържанието на който е дълбоката увереност в неограничената мощ на човешкия ум и човешкото познание и безапелационното отхвърляне на агностицизма:
„… ето проблемът, или решението. Ти можеш да го намериш с помощта на чистото мислене. Защото в математиката не съществува Ignorabimus! («ние няма да знаем»).
Неизмеримо е множеството от проблеми в математиката, и щом един проблем бъде решен, на негово място изплуват безчислени нови проблеми. Разрешете ми… да формулирам няколко определени проблема от различни математически дисциплини, проблеми, изследването на които може значително да стимулира по-нататъшното развитие на науката.“
Любопитна е самата формулировка и последователността на проблемите: Хилберт започва с теорията на множествата (1. Проблемът на Кантор за мощността на континуума), и обосновката на математиката (2. Непротиворечивост на аритметичните аксиоми). След това преминава към основите на геометрията (3. Равенство на обемите на два тетраедъра с равнолицеви основи и равни височини, 4. Проблемът за правата като най-късо съединение между две точки), теорията на непрекъснатите групи (знаменитият пети проблем за освобождаване на понятието непрекъсната група от изискването за диференцируемост), теорията на числата (7. Ирационалност и трансцедентност на някои числа, 8. Проблемът за простите числа, 9. Доказателство на максимално общ закон за взаимност в произволно числово поле, 10.
Читать дальше