Следующая фраза может огорчить тех, кто хочет, чтобы в мире было больше определенности: все, что мы знаем «по опыту», — не более чем выборка. Ведь на своем опыте мы испытываем не все, а только кое-что, а затем делаем обобщение. Все, что нам доступно, — лишь мимолетные образы по большей части невидимого нами мира, по которым мы и судим о том, что не можем наблюдать. Но люди уверены в выводах, которые делают на основе изучения ограниченных выборок, потому что опыт подсказывает: выборки работают! (Конечно, этот вывод сделан на основе таких же ограниченных наблюдений.)
Иногда полезные выводы обо всей обследуемой совокупности можно сделать лишь по нескольким образцам. Если мы отбираем их, чтобы установить состав однородного объекта, например делаем анализ крови на ДНК или определяем октановое число бензина, то достаточно одного образца крови или одной партии бензина. Но если элементы генеральной совокупности разнородны, как, например, рыбы в озере по размеру или затраты времени разных специалистов на ремонт компьютеров, то выборка должна быть больше — иногда существенно, хотя все же не настолько, как думают многие.
Как изучение нескольких элементов может рассказать о всей генеральной совокупности? Можно ли, отобрав 12 жителей города и спросив, как часто они ходят в кино или доверяют ли мэру, узнать что-либо о тех, кто не был опрошен? Да, можно. И такая малая выборка порой дает на удивление много информации, хотя отчасти это зависит и от того, как проведено исследование. Если мы просто опросим своих друзей или всех мужчин — клиентов парикмахерской, то данная группа, вероятно, не будет репрезентативной для всего населения и наши общие выводы окажутся ошибочными. Необходим метод, гарантирующий нас от систематического выделения однотипных выборок.
Решением этой проблемы является проведение действительно случайной выборки из интересующей нас генеральной совокупности. Осуществляя выбор случайным образом, мы обязательно получим погрешность, но погрешность, подчиняющуюся законам вероятности. Тогда можно рассчитать, например, вероятность того, что случайно выбрали демократов, проводя опрос в районе, где на самом деле преобладают республиканцы. И чем больше людей мы отберем таким случайным образом, тем меньше вероятность нерепрезентативности группы.
Если вам доводилось читать отчеты об опросах общественного мнения или научные статьи, авторы которых проводили выборку, значит, вы уже встречались с понятием «статистическая значимость». Статистическая значимость просто говорит: вы наблюдаете нечто реальное, а не произошедшее по чистой случайности. Насколько крупной должна быть выборка, чтобы получить статистически значимый результат? Достаточно ли нам опросить 1000 потребителей? Будет ли результат статистически значимым, если выборочно проверить сварку на шасси 50 автомашин или испытать действие нового лекарства на 100 пациентах?
Мне не раз доводилось слышать на первый взгляд авторитетные суждения по этому поводу. Кто-то утверждает, что получить статистически значимые результаты позволяет только выборка определенного размера. Однако спроси такого человека, как он определил это число, — он в лучшем случае сошлется на какое-нибудь правило из учебника по статистике, но объяснить, как оно рассчитано, скорее всего, не сможет.
Короче говоря, термином «статистическая значимость» часто злоупотребляют те, кто не вполне понимает, что он означает. Неужели эти люди действительно думают, что снижение неопределенности происходит только при выборке, достигшей этого порогового значения? Или же они считают, что экономическая стоимость информации, полученной при изучении малой выборки, всегда меньше затрат на проведение измерений? По своему опыту могу сказать: когда в любой компании проводится случайная выборка, всегда найдется «эксперт», точно знающий, что можно, а чего нельзя делать в статистике. Но я обнаружил, что процент ошибок в туманных воспоминаниях таких экспертов о статистике, которую они учили когда-то давно, на первом курсе университета, бывает намного выше ошибки при малой выборке.
Кто действительно разбирается в статистической значимости, так это Барри Нассбаум, главный статистик Службы статистической поддержки Агентства по защите окружающей среды (Statistical Support Services at the Environmental Protection Agency). Мы вместе занимались внедрением некоторых моих методов в EPA. Он отвечает на самые неожиданные вопросы, поступающие от сотрудников Агентства, связанные с проведением статистических анализов при решении проблем разных типов. Как-то он сказал мне: «Обращаясь за помощью к статистикам, люди всегда спрашивают, каким должен быть размер выборки. Это неправильный вопрос, но именно его и задают в первую очередь». Естественно, прежде всего надо выяснить, что они измеряют и зачем, и в этом с Нассбаумом нельзя не согласиться.
Читать дальше