Развиваем интуитивное понимание случайных выборок: пример с леденцами
Попробуйте выполнить небольшое задание. Укажите 90-процентный доверительный интервал для среднего веса одного леденца в граммах, то есть вы должны назвать всего два числа (нижнюю и верхнюю границы интервала), отстоящих друг от друга ровно настолько, чтобы вы были на 90 % уверены в том, что средний вес леденца попадет в этот диапазон. Как всегда, делая калиброванную оценку вероятности, вы, конечно, имеете какое-то представление о неизвестном показателе, каким бы сомнительным оно ни было. Между прочим, один грамм — вес одного кубического сантиметра воды. Запишите предполагаемый CI, прежде чем двигаться дальше. Проверьте его, следуя указаниям из главы 5, сделав эквивалентную ставку, рассмотрев все «за» и «против» того, что диапазон значений обоснован, и испытав границы интервала на соответствие практике.
Предположим теперь, что у меня есть обычный пакетик с леденцами, который можно купить в любой кондитерской. Открыв этот пакетик, я вынимаю наугад несколько конфет и взвешиваю их по очереди на весах. Обратите внимание на вопросы, которые изложены далее. Ответьте на каждый, прежде чем перейти к следующему этапу.
1. Допустим, я скажу, что вес первого отобранного мной леденца — 1,4 грамма. Отвечает ли это вашему 90-процентному доверительному интервалу? Если нет, то каким будет ваш новый 90-процентный CI? Запишите измененный интервал, прежде чем двигаться дальше.
2. Теперь я сообщаю результаты взвешивания остальных четырех из пяти наугад отобранных леденцов: 1,4; 1,5; 1,6 и 1,1 грамма. Как теперь изменится 90-процентный CI? Запишите и его.
3. Наконец, я говорю о результатах взвешивания еще трех леденцов (так что всего их стало восемь): 1,5; 0,9 и 1,7 грамма. Каков теперь ваш 90-процентный CI? Запишите окончательный вариант.
Всякий раз при поступлении новой информации ваш доверительный интервал должен сужаться. Если сначала (до взвешивания) он был очень широк, то уже после первого взвешивания должно произойти его существенное сокращение.
Я дал этот тест девяти калиброванным экспертам и получил практически одинаковые результаты. Главное различие между ними состояло в степени неуверенности специалистов в своей первоначальной оценке. Самый узкий интервал составлял 1–3 грамма, а самый широкий — 0,5–50 граммов, однако чаще всего диапазоны выглядели, скорее, узкими. Получив дополнительную информацию, эксперты в большинстве своем (особенно начинавшие с очень широкого интервала) быстро сузили свои диапазоны. Эксперт, указавший интервал 1–3 грамма, не сократил его после первого взвешивания, а тот, кто предложил 0,5–50 граммов, сильно опустил верхнюю границу и в конце концов пришел к интервалу 0,5–6 граммов.
На самом деле один леденец из этого пакетика весил в среднем около 1,45 грамма. Интересно, что эксперты довольно быстро сузили свои интервалы на основании дополнительной информации всего о нескольких конфетах.
Подобные упражнения помогают развить интуитивное понимание сути случайной выборки и интервала. Как мы вскоре увидим, выяснение субъективного мнения калиброванных экспертов без применения того, что кто-то назвал бы «настоящей статистикой», весьма полезно и даже имеет ряд преимуществ перед традиционными статистическими методами. Но давайте сначала узнаем, что говорится о малых выборках в большинстве работ по статистике.
Кое-что о малых выборках: подход пивовара
Точно рассчитать 90-процентный CI для среднего веса одного леденца, а не полагаться на мнение калиброванных экспертов позволяет метод, разработанный одним пивоваром. Он преподается в базовом курсе статистики и часто используется для определения погрешности выборки, состоящей всего из двух объектов. В самом начале XX века Уильяму Сили Госсету, химику и статистику ирландской пивоваренной компании Guinness, потребовалось установить, какой из двух сортов ячменя дает лучшее пиво с большим выходом. Ранее был разработан метод z-значения (z-score), или статистики нормальных распределений, позволяющий находить доверительный интервал на основе случайной выборки, состоящей из не менее чем 30 объектов. Метод дает распределения, не отличающиеся по форме от обсуждавшегося выше нормального. К сожалению, у Госсета не было возможности протестировать большое число партий пива, изготовленных из каждого сорта ячменя. Однако он не отказался от своей затеи измерить то, что как будто не поддавалось оценке, и решил вывести новый вид распределения для крайне малых выборок. К 1908 г. Госсет разработал новый эффективный метод, который назвал t-статистикой, и захотел опубликовать результаты своей работы.
Читать дальше