Leyes de voltaje y corriente
En este capítulo se definen, en primer lugar, los conceptos relacionados con las conexiones entre los siguientes elementos: rama, nodo, lazo, serie y paralelo. Posteriormente, se presentan las leyes básicas para el análisis de los circuitos eléctricos, como las de corriente y voltaje de Kirchhoff, formuladas en 1845 por el físico alemán Gustav Robert Kirchhoff (12 de marzo de 1824 - 17 de octubre de 1887).
Al final del capítulo se presentan los principios del divisor de corriente y del divisor de voltaje, los cuales nos permitirán obtener de forma rápida la corriente o el voltaje, respectivamente, en un elemento del circuito, cuando se conectan de una manera particular.
2.1. Definiciones básicas
En un diagrama de circuito eléctrico una ramarepresenta un solo elemento, como un resistor o una fuente. Sin embargo, el término rama también suele aplicarse a un grupo de elementos que llevan la misma corriente, en especial cuando son del mismo tipo. Por ejemplo, el diagrama esquemático de circuito mostrado en la figura 2.1contiene seis ramas.
Figura 2.1: Nodos, ramas y lazos en un diagrama de un circuito eléctrico.
Un nodoes el punto donde dos o más ramas se conectan. Es común indicar un nodo con un punto en un diagrama esquemático de circuito. El nodo también incluye todos los cables conectados al punto; por lo tanto un cable que conecta dos nodos es un único nodo, incluso si se muestran dos puntos. El diagrama esquemático mostrado en la figura 2.1contiene cuatro nodos, etiquetados como a , b , c , y d .
Un lazoes cualquier trayectoria cerrada en un circuito eléctrico. En el circuito de la figura 2.1, un ejemplo de un lazo lo comprende la trayectoria formada por el nodo a , pasando por el resistor R 1; el nodo b , pasando por la fuente I 1; el nodo d , pasando por la fuente V 1y regresando al nodo a .
Los elementos están conectados en seriesi cada par de elementos comparte un solo nodo, es decir, están conectados de manera secuencial, y por lo tanto circula la misma corriente por todos los elementos. Por otro lado, los elementos están conectados en paralelosi están conectados al mismo par de nodos, y por lo tanto tienen el mismo voltaje entre sus terminales. En el circuito de la figura 2.2, los elementos V 1, R 1y R 2están conectados en serie, mientras que los elementos I 1, R 3y R 4están conectados en paralelo.
Figura 2.2: Elementos en serie y en paralelo en un circuito eléctrico.
Cuando los resistores se conectan en serie o en paralelo, su resistencia equivalente se puede determinar. La resistencia total equivalente de N resistores conectados en serie es igual a la suma de las resistencias individuales de los resistores:
Los circuitos de la figura 2.3son equivalentes. La resistencia equivalente vista desde los terminales a − b , de los resistores conectados en serie en el circuito de la figura 2.3(a)es igual a 1,82 kΩ.
La resistencia total equivalente de N resistores conectados en paralelo viene dada por la siguiente ecuación:
En el caso de resistores conectados en paralelo, es más sencillo determinar la conductancia total equivalente en lugar de la resistencia total equivalente. La conductancia total equivalente de N resistores conectados en paralelo es igual a la suma de las conductancias individuales de los resistores:
Figura 2.3: Resistencia equivalente de resistores conectados en serie.
Los circuitos de la figura 2.4son equivalentes. La resistencia equivalente vista desde los terminales a − b de los resistores conectados en paralelo en el circuito de la figura 2.4(a)es igual a 53,44 Ω.
Figura 2.4: Resistencia equivalente de resistores conectados en paralelo.
Aparte de la conexión de resistores en serie y en paralelo, estos también pueden conectarse en forma de estrella (se puede ver como Y o T) o delta (se puede ver como Δ o Π). Las conexiones de resistores tipo estrella y delta se pueden transformar entre sí, esto es de Δ a Y y de Y a Δ, con el fin de reducir el circuito eléctrico y facilitar el cálculo de las incógnitas, como la corriente y el voltaje de los elementos del circuito).
La figura 2.5muestra las conexiones de resistores en estrella y en delta. En la figura 2.5(a)se observa una conexión en estrella de los resistores R 1, R 2y R 3, y en la figura 2.5(b)se muestra una conexión en delta de los Ra , Rb y Rc . Es importante observar la etiqueta de los nodos al momento de convertir una red estrella en delta y viceversa.
Para facilitar la equivalencia entre las conexiones de resistores en estrella y delta, y así agilizar el cálculo de las resistencias respectivas, es conveniente superponer estos circuitos, tal como se muestra en la figura 2.6.
Figura 2.5: En (a) los resistores conectados en estrella, y en (b) los resistores conectados en delta.
Figura 2.6: Superposición de resistores en configuraciones delta y estrella.
Las ecuaciones para determinar la resistencia equivalente en estrella, a partir de una red en delta, son las siguientes:
Las ecuaciones para determinar la resistencia equivalente en delta, a partir de una red en estrella, son las siguientes:
Ejemplo 2.1.1.Encuentre el valor de la resistencia equivalente Rab , en el circuito de la figura 2.7.
Figura 2.7: Circuito eléctrico del ejemplo 2.1.1.
Solución:Sabiendo que las resistencias de 10 Ω, 20 y 15 Ω están en una configuración delta, tal como se muestra en la figura 2.8(a), se procede a determinar sus resistencias equivalentes en configuración estrella, tal como se muestra en la figura 2.8(b).
Figura 2.8: Solución del circuito eléctrico del ejemplo 2.1.1.
Las resistencias de 63,44 Ω, 3,33 Ω y 6,66 Ω están ahora en una conexión en estrella, por lo que se procede a transformarlas en una configuración delta, cuyo resultado es el circuito de la figura 2.8(c).
Ahora se resuelve el paralelo de la figura 2.8(c). Los resistores resultantes quedan en paralelo 100||154,18||10,34 Ω, por lo que la resistencia equivalente Rab = 8,8341 Ω.
Ejemplo 2.1.2.Encuentre el valor de la resistencia equivalente Rab en el circuito de la figura 2.9.
Figura 2.9: Circuito eléctrico del ejemplo 2.1.2.
Читать дальше