Jaime Frejlich - Photorefractive Materials for Dynamic Optical Recording

Здесь есть возможность читать онлайн «Jaime Frejlich - Photorefractive Materials for Dynamic Optical Recording» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Photorefractive Materials for Dynamic Optical Recording: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Photorefractive Materials for Dynamic Optical Recording»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A comprehensive and up-to-date reference on holographic recording Photorefractive Materials for Dynamic Optical Recording The book provides an analysis of the fundamental properties of the materials and explores the dynamic recording of a spatial electric charge distribution and the associated spatial electric field distribution. The text also includes information on the characterization of photorefractive materials using holographic and nonholographic optical methods and electrical techniques, reporting a large number of actual experimental results on a variety of materials. This important resource:
Offers an in-depth source of information on the physics and technology of all relevant holographic recording methods Contains text written by a pioneer in the field—Jaime Frejlich's research defined the field of dynamic holographic recording Presents a one-stop resource that covers all phenomena and methods Includes a review of the practical applications of the technology Written for materials scientists, solid state physicists, optical physicists, physicists in industry, and engineering scientists,
offers a comprehensive resource on the topic from the groundbreaking expert in the field.

Photorefractive Materials for Dynamic Optical Recording — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Photorefractive Materials for Dynamic Optical Recording», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
crystal boule as grown along its [001]‐axis.Figure 1.8 Actual undoped sillenite crystals: raw Photorefractive Materials for Dynamic Optical Recording - изображение 19crystal boule grown along ...Figure 1.9 Index‐of‐refraction of BTO that is formulated by 6Figure 110 type cubic crystal and its crystallographic axes - фото 20[6].Figure 1.10 картинка 21‐type cubic crystal and its crystallographic axes картинка 22, картинка 23and картинка 24with...Figure 1.11 Principal coordinate axes system картинка 25arising by the effect of an ele...Figure 1.12 Sillenite crystal cut along its principal crystallographic axes, w...Figure 1.13 Lithium niobate crystal with an applied electric field along the p...Figure 1.14 Lithium niobate crystal ellipsoid (black) and its modified (gray) ...

2 Chapter 2Figure 2.1 Energy diagram for a typical CdTe crystal doped with vanadium, with...Figure 2.2 Dark conductivity measured at various temperatures for a CdTe:V cry...Figure 2.3 Representation of the sillenite octahedra unit with the lone‐electr...Figure 2.4 Octahedra sharing corners.Figure 2.5 Sillenite structure showing (dashed lines) the empty tetrahedra for...Figure 2.6 Localized states in the Band Gap of nominally undoped Photorefractive Materials for Dynamic Optical Recording - изображение 26crystal, fr...Figure 2.7 Schematic representation of luminescence effect on a sillenite crys...Figure 2.8 Photoluminescence in BTO‐008. The dashed line is the spectrum of th...Figure 2.9 Intrinsic semiconductor: Fermi level for an intrinsic semiconductor...Figure 2.10 Doped semiconductor: Fermi level pinned at the position of the dop...Figure 2.11 Doped semiconductor: Fermi картинка 27and quasi‐stationary Fermi levels upo...Figure 2.12 Recombination centers.Figure 2.13 Traps.Figure 2.14 Schematic representation of a material with one center (one single...Figure 2.15 Under the action of light (of adequate wavelength) electrons are e...Figure 2.16 In this example, under the action of light, electrons and holes ar...Figure 2.17 Under nonuniform light, negative charges (in this case, we assume ...Figure 2.18 Photochromic effect and the band‐transport model. On the left side...Figure 2.19 Schema for the crystal samples: undoped Photorefractive Materials for Dynamic Optical Recording - изображение 28(labeled BTO‐J40), lead‐...Figure 2.20 Crystal samples.Figure 2.21 картинка 29(left) and картинка 30:Fe (right) crystal samples showing the [010] and c ‐...Figure 2.22 Average photovoltaic current density measured along axes [010] and...Figure 2.23 Polarization‐dependent photovoltaic photocurrent for both BTeO and...Figure 2.24 Photocurrent ( Photorefractive Materials for Dynamic Optical Recording - изображение 31) Photorefractive Materials for Dynamic Optical Recording - изображение 32, for undoped Photorefractive Materials for Dynamic Optical Recording - изображение 33as a function of the angle картинка 34. Th...Figure 2.25 Photovoltaic current versus light intensity картинка 35(uniform картинка 36nm laser ...Figure 2.26 Photovoltaic current versus light intensity (uniform картинка 37nm laser in...Figure 2.27 Photovoltaic current versus light intensity (uniform картинка 38nm laser in...Figure 2.28 Average photovoltaic current density data, measured along the c ‐ax...Figure 2.29 Light‐induced absorption spots produced in the center of an undope...Figure 2.30 Photochromic relaxation time for Photorefractive Materials for Dynamic Optical Recording - изображение 39as a function of inverse absolu...Figure 2.31 Transmitted versus incident power (both measured in the air) for a...Figure 2.32 Light‐induced Schottky barrier at the illuminated transparent cond...Figure 2.33 Schema of a photorefractive BTO crystal plate between two conducti...Figure 2.34 Cross‐section schema of the ITO‐sandwiched BTO plate indicating th...Figure 2.35 ITO sandwiched 0.81 mm thick BTO crystal plate with electrodes wir...Figure 2.36 Measured photocurrent data referred to Fig. 2.35 with картинка 40, картинка 41and картинка 42i...Figure 2.37 Photovoltaic‐based current data ( картинка 43, картинка 44and картинка 45) computed from curves ...

3 Chapter 3Figure 3.1 Photoactive centers inside the Band Gap. There are filled traps картинка 46(...Figure 3.2 Under the action of light the electrons are excited from the traps ...Figure 3.3 The charge distribution produces a space‐charge electric field modu...Figure 3.4 The electric field modulation may produce deformations in the cryst...Figure 3.5 If the photoconductive material is also electro‐optic, that is to s...Figure 3.6 Holographic setup: A laser beam is divided by the beamsplitter BS, ...Figure 3.7 Generation of an interference pattern of fringes.Figure 3.8Figure 3.8 Light excitation of electrons to the CB in the crystal.Figure 3.9Figure 3.9 Generation of an electric charge spatial modulation in th...Figure 3.10Figure 3.10 Generation of a space‐charge electric field modulation.Figure 3.11Figure 3.11 The electric field modulation produces a index‐of‐refra...Figure 3.12Figure 3.12 The recorded grating can be read using one of the recor...Figure 3.13Figure 3.13 The grating is erased during reading.Figure 3.14 Until all recording is erased.Figure 3.15 Space‐charge electric field grating being recorded by the картинка 47‐shifte...Figure 3.16 Space‐charge electric field without an externally applied field fo...Figure 3.17 Simulated recording (from 0 to 20 au) and erasure (from 20 to 50 a...Figure 3.18 Index‐of‐refraction modulation arising in the crystal volume. The ...Figure 3.19 Schematic description of running hologram generation in photorefra...Figure 3.20 Plot of Photorefractive Materials for Dynamic Optical Recording - изображение 48for the assumed parameters: Photorefractive Materials for Dynamic Optical Recording - изображение 49m, Photorefractive Materials for Dynamic Optical Recording - изображение 50m, картинка 51, картинка 52rad/s, картинка 53and картинка 54Figure 3.21 Plot of картинка 55from Eq. 3.85 for the same parameters referred to in Fig...Figure 3.22 Plotting of Q as a function of картинка 56( картинка 57‐axis) and картинка 58( картинка 59‐axis) for картинка 60V/m...Figure 3.23 Plotting of Q as a function of K , from Eq. 3.91, for typical value...Figure 3.24 Plotting of картинка 61(continuous curve), картинка 62(long dashing curve) and картинка 63(sh...Figure 3.25 One‐species/two‐valence/two‐charge carrier model contributing to c...Figure 3.26 Two‐species/two‐valence/two‐charge carrier model contributing to c...Figure 3.27 Hole‐electron competition on different photoactive centers under t...Figure 3.28 Short circuit schema using conductive silver glue to electrically ...

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Photorefractive Materials for Dynamic Optical Recording»

Представляем Вашему вниманию похожие книги на «Photorefractive Materials for Dynamic Optical Recording» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Photorefractive Materials for Dynamic Optical Recording»

Обсуждение, отзывы о книге «Photorefractive Materials for Dynamic Optical Recording» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x