Yves Tille - Sampling and Estimation from Finite Populations

Здесь есть возможность читать онлайн «Yves Tille - Sampling and Estimation from Finite Populations» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Sampling and Estimation from Finite Populations: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Sampling and Estimation from Finite Populations»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A much-needed reference on survey sampling and its applications that presents the latest advances in the field Seeking to show that sampling theory is a living discipline with a very broad scope, this book examines the modern development of the theory of survey sampling and the foundations of survey sampling. It offers readers a critical approach to the subject and discusses putting theory into practice. It also explores the treatment of non-sampling errors featuring a range of topics from the problems of coverage to the treatment of non-response. In addition, the book includes real examples, applications, and a large set of exercises with solutions.
Sampling and Estimation from Finite Populations Provides an up-to-date review of the theory of sampling Discusses the foundation of inference in survey sampling, in particular, the model-based and design-based frameworks Reviews the problems of application of the theory into practice Also deals with the treatment of non sampling errors
is an excellent book for methodologists and researchers in survey agencies and advanced undergraduate and graduate students in social science, statistics, and survey courses.

Sampling and Estimation from Finite Populations — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Sampling and Estimation from Finite Populations», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

For this reason, even when the size of the population is known it is recommended to use the estimator of Hájek 1971 HAJ which - фото 269is known, it is recommended to use the estimator of Hájek (1971) (HAJ) which consists of dividing the total by the sum of the inverses of the inclusion probabilities:

(2.2) Sampling and Estimation from Finite Populations - изображение 270

When Sampling and Estimation from Finite Populations - изображение 271then Sampling and Estimation from Finite Populations - изображение 272Therefore, the bad property of the expansion estimator is solved because the Hájek estimator is linearly invariant. However, картинка 273is usually biased because it is a ratio of two random variables. In some cases, such as simple random sampling without replacement with fixed sample size, the Hájek ratio is equal to the expansion estimator.

2.7 Variance of the Total Estimator

Result 2.5

The variance of the expansion estimator of the total is

(2.3) Proof It is also possible to write the expansion estimator with a vector - фото 274

Proof:

It is also possible to write the expansion estimator with a vector notation - фото 275

It is also possible to write the expansion estimator with a vector notation. Let be the vector of dilated values This vector only exists if all the inclusion - фото 276be the vector of dilated values:

This vector only exists if all the inclusion probabilities are nonzero We can - фото 277

This vector only exists if all the inclusion probabilities are nonzero. We can then write

The calculation of the variance is then immediate If the sample is of fixed - фото 278

The calculation of the variance is then immediate:

If the sample is of fixed sample size Sen 1953 and Yates Grundy 1953 - фото 279

If the sample is of fixed sample size, Sen (1953) and Yates & Grundy (1953) have shown the following result:

Result 2.6

If the sampling design is of fixed sample size, then the variance of the expansion estimator can also be written as

(2.4) Proof By expanding the square of Expression 24 we obtain 25 Under a - фото 280

Proof:

By expanding the square of Expression ( 2.4), we obtain

(2.5) Under a design with fixed sample size it has been proved in Result 22 page - фото 281

Under a design with fixed sample size, it has been proved in Result 2.2, page 16, that

The first two terms of Expression 25 are therefore null and we find the - фото 282

The first two terms of Expression ( 2.5) are therefore null and we find the expression of Result 2.5.

In order to estimate the variance, we use the following general result:

Result 2.7

Let картинка 283be a function from Sampling and Estimation from Finite Populations - изображение 284to Sampling and Estimation from Finite Populations - изображение 285. A necessary and sufficient condition for

Sampling and Estimation from Finite Populations - изображение 286

to unbiased ly estimate

Sampling and Estimation from Finite Populations - изображение 287

is that for all Proof Since the est - фото 288for all Proof Since the estimator is unbiased if and only if - фото 289

Proof:

Since

the estimator is unbiased if and only if for all This result enabl - фото 290

the estimator is unbiased if and only if картинка 291for all картинка 292

This result enables us to construct two variance estimators. The first one is called the Horvitz‐Thompson estimator. It is obtained by applying Result 2.7to Expression ( 2.3):

(2.6) This estimator can take negative values but is unbiased The second one is - фото 293

This estimator can take negative values, but is unbiased.

The second one is called Sen–Yates–Grundy estimator (see Sen, 1953; Yates & Grundy, 1953). It is unbiased only for designs with fixed sample size s. It is obtained by applying Result 2.7to Expression ( 2.4):

(2.7) Sampling and Estimation from Finite Populations - изображение 294

This estimator can also take negative values, but when Sampling and Estimation from Finite Populations - изображение 295for all Sampling and Estimation from Finite Populations - изображение 296then the estimator is always positive. This condition is called the Yates–Grundy condition.

The Yates–Grundy condition is a special case of the negative correlation property defined as follows:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Sampling and Estimation from Finite Populations»

Представляем Вашему вниманию похожие книги на «Sampling and Estimation from Finite Populations» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Sampling and Estimation from Finite Populations»

Обсуждение, отзывы о книге «Sampling and Estimation from Finite Populations» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x