Yves Tille - Sampling and Estimation from Finite Populations

Здесь есть возможность читать онлайн «Yves Tille - Sampling and Estimation from Finite Populations» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Sampling and Estimation from Finite Populations: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Sampling and Estimation from Finite Populations»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A much-needed reference on survey sampling and its applications that presents the latest advances in the field Seeking to show that sampling theory is a living discipline with a very broad scope, this book examines the modern development of the theory of survey sampling and the foundations of survey sampling. It offers readers a critical approach to the subject and discusses putting theory into practice. It also explores the treatment of non-sampling errors featuring a range of topics from the problems of coverage to the treatment of non-response. In addition, the book includes real examples, applications, and a large set of exercises with solutions.
Sampling and Estimation from Finite Populations Provides an up-to-date review of the theory of sampling Discusses the foundation of inference in survey sampling, in particular, the model-based and design-based frameworks Reviews the problems of application of the theory into practice Also deals with the treatment of non sampling errors
is an excellent book for methodologists and researchers in survey agencies and advanced undergraduate and graduate students in social science, statistics, and survey courses.

Sampling and Estimation from Finite Populations — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Sampling and Estimation from Finite Populations», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The variables are observed only on the units selected in the sample. A statistic Sampling and Estimation from Finite Populations - изображение 164is a function of the values Sampling and Estimation from Finite Populations - изображение 165that are observed on the random sample: Sampling and Estimation from Finite Populations - изображение 166. This statistic takes the value картинка 167on the sample The expectation under the design is defined from the sampling design The - фото 168. The expectation under the design is defined from the sampling design:

The variance operator is defined using the expectation operator 23 - фото 169

The variance operator is defined using the expectation operator:

23 Inclusion Probabilities The inclusion probability is the probability that - фото 170

2.3 Inclusion Probabilities

The inclusion probability картинка 171is the probability that unit is selected in the sample This probability is in theory derived from the - фото 172is selected in the sample. This probability is, in theory, derived from the sampling design:

for all In sampling designs without replacement the random variables ha - фото 173

for all картинка 174. In sampling designs without replacement, the random variables картинка 175have Bernoulli distributions with parameter картинка 176There is no particular reason to select units with equal probabilities. However, it will be seen below that it is important that all inclusion probabilities be nonzero.

The second‐order inclusion probability (or joint inclusion probability) картинка 177is the probability that units and are selected together in the sample for all - фото 178and are selected together in the sample for all In sampling designs witho - фото 179are selected together in the sample:

for all In sampling designs without replacement when the secondorder - фото 180

for all картинка 181In sampling designs without replacement, when картинка 182, the second‐order inclusion probability is reduced to the first‐order inclusion probability, in other words картинка 183for all The variance of the indicator variable is denoted by which is - фото 184

The variance of the indicator variable is denoted by which is the variance of a Bernoulli variable The covariances - фото 185is denoted by

which is the variance of a Bernoulli variable The covariances between - фото 186

which is the variance of a Bernoulli variable. The covariances between indicators are

Sampling and Estimation from Finite Populations - изображение 187

One can also use a matrix notation. Let

Sampling and Estimation from Finite Populations - изображение 188

be a column vector. The vector of inclusion probabilities is

Define also the symmetric matrix and the variancecovariance matrix - фото 189

Define also the symmetric matrix:

and the variancecovariance matrix Matrix is a varianceco - фото 190

and the variance–covariance matrix

Matrix is a variancecovariance matrix which is therefore semidefinite - фото 191

Matrix картинка 192is a variance–covariance matrix which is therefore semi‐definite positive.

Result 2.1

The sum of the inclusion probabilities is equal to the expected sample size.

Proof:

If the sample size is fixed then is not random In this case the sum of the - фото 193

If the sample size is fixed, then картинка 194is not random. In this case, the sum of the inclusion probabilities is exactly equal to the sample size.

Result 2.2

If the random sample is of fixed sample size, then

Proof Let be a column vector consisting of - фото 195

Proof:

Let картинка 196be a column vector consisting of картинка 197ones and картинка 198a column vector consisting of zeros the sample size can be written as We directly have and - фото 199zeros, the sample size can be written as We directly have and If the sample is of fixed sample si - фото 200. We directly have

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Sampling and Estimation from Finite Populations»

Представляем Вашему вниманию похожие книги на «Sampling and Estimation from Finite Populations» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Sampling and Estimation from Finite Populations»

Обсуждение, отзывы о книге «Sampling and Estimation from Finite Populations» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x