Anthony Kelly - Crystallography and Crystal Defects

Здесь есть возможность читать онлайн «Anthony Kelly - Crystallography and Crystal Defects» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Crystallography and Crystal Defects: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Crystallography and Crystal Defects»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The classic book that presents a unified approach to crystallography and the defects found within crystals, revised and updated This new edition of
explains the modern concepts of crystallography in a clear, succinct manner and shows how to apply these concepts in the analyses of point, line and planar defects in crystalline materials. 
Fully revised and updated, this book now includes:
Original source references to key crystallographic terms familiar to materials scientists Expanded discussion on the elasticity of cubic materials New content on texture that contains more detail on Euler angles, orientation distribution functions and an expanded discussion on examples of textures in engineering materials Additional content on dislocations in materials of symmetry lower than cubic An expanded discussion of twinning which includes the description and classification of growth twins The inclusion and explanation of results from atomistic modelling of twin boundaries Problem sets with new questions, detailed worked solutions, supplementary lecture material and online computer programs for crystallographic calculations. Written by authors with extensive lecturing experience at undergraduate level,
continues to take its place as the core text on the topic and provides the essential resource for students and researchers in metallurgy, materials science, physics, chemistry, electrical, civil and mechanical engineering.

Crystallography and Crystal Defects — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Crystallography and Crystal Defects», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The great circle passing through 001 and 010 is the [100] zone, containing planes of the general form (0 kl ). Therefore, the angle between this zone and the primitive must be the angle between [100] and [001], β , as shown in Figure 2.21a. This is because the stereographic projection is a conformal projection (see Appendix 2); that is, one for which angles are faithfully reproduced. Similarly, α and γ can be specified on Figure 2.21a from the triclinic system geometry.

Angles between poles can be determined using Eq. (A3.18). Once the position of the 010 pole (or any other pole of the form hk 0) has been chosen, geometry determines the positions of the remaining poles on the stereogram. Thus, for example, the position of the 001 pole is fixed knowing that it lies in the [100] zone, which has to make an angle of β with the primitive, and that 001 is a given angle from 010, determined for example using Eq. (A3.18). Likewise, the position of a pole 0 kl lying in the [100] zone can be determined, as can the positions of the poles 100, h 0 l , hk 0 and hkl .

While stereographic projections can now be produced routinely via proprietary software packages, it is still instructive to consider further aspects of the geometry of the part of the triclinic stereogram shown in Figure 2.21a in order to gain a full appreciation of the richness of information displayed on stereograms. An ( hkl ) plane of a triclinic crystal is shown in Figure 2.21b. The six angles φ 1– φ 6in Figure 2.21b are the same as those marked in Figure 2.21a.

Thus, for example, φ 1in Figure 2.21b is an angle lying in the (001) plane. It is the angle between the y ‐axis and the vector [ картинка 385 h 0] common to ( hkl ) and (001); that is, the angle between the zone containing (001), ( h 0 l ) and (100) and the zone containing (001), ( hkl ) and ( hk 0). We can therefore mark φ 1on the stereogram. Similarly, φ 5in Figure 2.21b is an angle lying in the (100) plane. It is the angle between the z ‐axis and the vector [0 картинка 386 k ] common to ( hkl ) and (100); that is, the angle between the zone containing (100), ( hk 0) and (010) and the zone containing (100), ( hkl ) and (0 kl ). φ 5can therefore also be marked on the stereogram. Proceeding in this way, we can identify all of the angles φ 1– φ 6. We have, from the geometry in Figure 2.21b:

(2.10) Crystallography and Crystal Defects - изображение 387

Furthermore, from the triangle on the (001) face in Figure 2.21b we have, using the sine rule:

(2.11) Crystallography and Crystal Defects - изображение 388

Therefore:

(2.12a) Crystallography and Crystal Defects - изображение 389

and similarly:

(2.12b) Crystallography and Crystal Defects - изображение 390

and:

(2.12c) Crystallography and Crystal Defects - изображение 391

As an aside, we note that the equations in Eq. (2.12)are also of use in finding axial ratios and axial angles from measured angles between planes on single crystal specimens of crystals belonging to the triclinic crystal system; such crystals tend to be minerals or organic materials, rather than metals, the crystal structures of which rarely tend to belong to either the monoclinic or the triclinic systems.

2.9 Special Forms in the Crystal Classes

A summary of the special forms in the various crystal classes for the various crystal systems is given in Table 2.1. The orientation of the axes is that used in this chapter. Monoclinic crystals are in the 2nd setting of Figure 2.6and trigonal crystals are referred to hexagonal axes. There are no special forms in the triclinic system.

2.10 Enantiomorphous Crystal Classes

In some crystal classes the possibility exists of crystals being found in either a right‐handed or a left‐handed modification with the two not being superposable, in the sense that the right hand of the body cannot be superposed upon the left hand. This occurs if the crystal only possesses simple rotation symmetry operations; that is, no symmetry operation of the second kind. Therefore, mirror planes and rotoinversion axes of any degree do not appear in such crystal classes. There are 11 of these classes: 1, 2, 3, 4, 6, 23, 222, 32, 422, 622 and 432.

2.11 Laue Groups

Some physical methods of examination of crystals cannot determine whether or not there is a centre of symmetry present, such as when stationary single crystals are illuminated by a continuous distribution of X‐ray wavelengths (known as ‘white radiation’) to produce Laue diffraction patterns. This is known as the Laue method. Such diffraction patterns are used for symmetry determination and for the accurate alignment of crystals; they are also useful for time‐resolved macromolecular crystallography using synchrotron radiation. The Laue group is the crystal class to which a particular crystal belongs if a centre of symmetry is added to the symmetry elements already present. The 11 Laue groups are shown in Table 2.2. The loss of symmetry information in time‐resolved macromolecular crystallography is more than compensated for by the ability to capture structural information over subnanosecond timescales in fast chemical reactions such as enzyme reactions.

Table 2.2Laue groups

System Class Laue group
Cubic 432, картинка 3923 m, картинка 39323, картинка 394 картинка 395 картинка 396
Hexagonal 622, 6 mm , картинка 397 m 2, 6/ mmm 6, картинка 398, 6/ m 6/ mmm 6/ m
Tetragonal 422, 4 mm , картинка 399 m 2, 4/ mmm 4, картинка 400, 4/ m 4/ mmm 4/ m
Trigonal 32, 3 m , картинка 4013, картинка 402 картинка 403 картинка 404
Orthorhombic 222, 2 mm , mmm mmm
Monoclinic 2, m , 2/ m 2/ m
Triclinic 1, картинка 405 картинка 406

2.12 Space Groups

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Crystallography and Crystal Defects»

Представляем Вашему вниманию похожие книги на «Crystallography and Crystal Defects» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Crystallography and Crystal Defects»

Обсуждение, отзывы о книге «Crystallography and Crystal Defects» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x