Anthony Kelly - Crystallography and Crystal Defects

Здесь есть возможность читать онлайн «Anthony Kelly - Crystallography and Crystal Defects» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Crystallography and Crystal Defects: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Crystallography and Crystal Defects»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The classic book that presents a unified approach to crystallography and the defects found within crystals, revised and updated This new edition of
explains the modern concepts of crystallography in a clear, succinct manner and shows how to apply these concepts in the analyses of point, line and planar defects in crystalline materials. 
Fully revised and updated, this book now includes:
Original source references to key crystallographic terms familiar to materials scientists Expanded discussion on the elasticity of cubic materials New content on texture that contains more detail on Euler angles, orientation distribution functions and an expanded discussion on examples of textures in engineering materials Additional content on dislocations in materials of symmetry lower than cubic An expanded discussion of twinning which includes the description and classification of growth twins The inclusion and explanation of results from atomistic modelling of twin boundaries Problem sets with new questions, detailed worked solutions, supplementary lecture material and online computer programs for crystallographic calculations. Written by authors with extensive lecturing experience at undergraduate level,
continues to take its place as the core text on the topic and provides the essential resource for students and researchers in metallurgy, materials science, physics, chemistry, electrical, civil and mechanical engineering.

Crystallography and Crystal Defects — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Crystallography and Crystal Defects», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(2.5) Other point groups besides 6 mmm in the hexagonal system are shown in Figure - фото 308

Other point groups besides 6/ mmm in the hexagonal system are shown in Figure 2.6. We note that картинка 309(≡ 3/ m ) is placed in this system because of the use of rotoinversion axes to describe symmetry operations of the second sort; 6, картинка 310, 6/ m and 6 mm show no diad axes, just like their counterparts in the tetragonal system. The crystal axes for 6 mm are usually chosen to be perpendicular to one set of mirrors (they then lie in the other set) and картинка 311 m 2 could be developed as картинка 312 m (≡ 3/ mm ). The diads automatically arise and are chosen as crystallographic axes. Of course, 622 contains diads. It could be developed as 62, since the second set of diads arises automatically (see Table 1.2). The axes are chosen parallel to one set of diads. Only 6/ m and 6/ mmm are centrosymmetric in this system.

It is apparent from the stereogram in Figure 2.12b that stereograms with 0001 at the centre showing { hki 0} poles are straightforward to plot. To plot more general poles on a stereogram with 0001 at the centre, it is apparent that the c / a ratio has to be used. Thus, for example, this has to be used to determine the angle between faces such as (0001) and ( hh картинка 313 l ), for example (11 картинка 3141). It is convenient to choose a ( hh картинка 315 l ) plane because such a plane is equally inclined to the x ‐ and the y ‐axes.

From Figure 2.15, the angle θ between the (0001) pole and the ( hh Crystallography and Crystal Defects - изображение 316 l ) pole is seen to be given by:

(2.6) Crystallography and Crystal Defects - изображение 317

Figure 215Geometry to determine the angle θ between the 0001 pole and the - фото 318

Figure 2.15Geometry to determine the angle θ between the (0001) pole and the ( картинка 319) pole

Similarly, the angle θ between (0001) and ( h 0 Crystallography and Crystal Defects - изображение 320 l ) is:

(2.7) Crystallography and Crystal Defects - изображение 321

An example of a stereogram centred at (0001) with poles of the forms {11 картинка 3221}, {10 картинка 3231} and {12 картинка 3241} indicated for a hexagonal cell is shown in Section 2.6in connection with crystals of the trigonal system. The special forms in the various classes of the hexagonal system are listed in Table 2.1.

2.6 Trigonal System

This crystal system is defined by the possession of a single triad axis. It is closely related to the hexagonal system. The possession of a single triad axis by a crystal does not, by itself, indicate whether the lattice considered as a set of points is truly hexagonal, or whether it is based on the staggered stacking of triequiangular nets. When the lattice is rhombohedral, a cell of the shape of Figure 1.19k can be used. The cell in Figure 1.19k is a rhombohedron and the angle α (< 120°) is characteristic of the substance. When the lattice of a trigonal crystal is hexagonal, it is not appropriate to use a rhombohedral unit cell.

The symmetry elements in the holosymmetric class картинка 325 m are shown in Figure 2.6and the repetition of a single pole in accordance with this symmetry is also demonstrated in this figure. In картинка 326 m , three diad axes arise automatically from the presence of картинка 327and the three mirrors lying parallel to картинка 328. These diad axes, which intersect in the inverse triad axis, do not lie in the mirror planes. If the rhombohedral cell is used for such a crystal then the axes cannot be chosen parallel to prominent axes of symmetry.

A stereogram of a trigonal crystal indexed according to a rhombohedral unit cell is shown in Figure 2.16. The value of α is 98°. The x ‐, y ‐ and z ‐axes are taken to lie in the mirror planes and the inverse triad is a body diagonal of the cell, therefore lying along the direction [111], which, from the geometry of the rhombohedral unit cell, is also parallel to the normal to the (111) plane. It is clear that the x ‐, y ‐ and z ‐axes – that is, the directions [100], [010] and [001] – do not lie normal to the (100), (010) and (001) planes, respectively. However, these directions are easily located. For example, the z ‐axis, [001], is the pole of the zone containing ( картинка 32910), (010), (100) and (1 картинка 3300), shown as a great circle in Figure 2.16. Likewise, the y ‐axis is the pole of the zone containing (10 картинка 331), (100), (001) and ( картинка 33201), and the x ‐axis is the pole of the zone containing (0 1 001 010 and 01 Figure 216A stereogram of a trigonal crys - фото 3331), (001), (010) and (01 Figure 216A stereogram of a trigonal crystal of class m - фото 334).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Crystallography and Crystal Defects»

Представляем Вашему вниманию похожие книги на «Crystallography and Crystal Defects» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Crystallography and Crystal Defects»

Обсуждение, отзывы о книге «Crystallography and Crystal Defects» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x