Anthony Kelly - Crystallography and Crystal Defects

Здесь есть возможность читать онлайн «Anthony Kelly - Crystallography and Crystal Defects» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Crystallography and Crystal Defects: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Crystallography and Crystal Defects»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The classic book that presents a unified approach to crystallography and the defects found within crystals, revised and updated This new edition of
explains the modern concepts of crystallography in a clear, succinct manner and shows how to apply these concepts in the analyses of point, line and planar defects in crystalline materials. 
Fully revised and updated, this book now includes:
Original source references to key crystallographic terms familiar to materials scientists Expanded discussion on the elasticity of cubic materials New content on texture that contains more detail on Euler angles, orientation distribution functions and an expanded discussion on examples of textures in engineering materials Additional content on dislocations in materials of symmetry lower than cubic An expanded discussion of twinning which includes the description and classification of growth twins The inclusion and explanation of results from atomistic modelling of twin boundaries Problem sets with new questions, detailed worked solutions, supplementary lecture material and online computer programs for crystallographic calculations. Written by authors with extensive lecturing experience at undergraduate level,
continues to take its place as the core text on the topic and provides the essential resource for students and researchers in metallurgy, materials science, physics, chemistry, electrical, civil and mechanical engineering.

Crystallography and Crystal Defects — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Crystallography and Crystal Defects», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The angles between poles on a stereogram and the ratio of the lattice parameters (i.e. the ratio a : c in this crystal system) are easily related by using equations such as those in Eq. (2.1) with a = b .

2.4 Cubic System

Cubic crystals possess four triad axes as a minimum symmetry requirement. These are arranged as in Figure 1.30and are always taken to lie along the 〈111〉 type directions of the unit cell, which is a cube, so a = b = c . This is the only crystal system in which the direction [ uvw ] necessarily coincides with the normal to the plane ( uvw ) for all u , v , w .

If we put four triad axes to coincide with the 〈111〉 directions on a stereogram and allow these to operate on a single pole, as in Figure 2.9, we find that diad axes automatically arise along the crystal axes. The presence of the diads also follows from Table 1.2, with the row starting 233. The point group symbol used to describe the combination of a diad and two triads, shown in Table 1.2, is just 23. This is the cubic point group of lowest symmetry. The multiplicity of the general form for this point group is 12 ( Figure 2.9). A feature of the symbols for describing point groups in the cubic system is that the symbol 3 or картинка 265, even though it indicates the defining axis for the system, is never placed first because the triads, or inverse triads, are always at 54.74° (cos −1(1/ картинка 266)) to the crystal axes. (In all other systems the defining axis comes first in the symbol – the presence of the diads or inverse diads parallel to at least two axes must be stated to distinguish orthorhombic point groups from monoclinic point groups.)

Figure 29The cubic point group of lowest symmetry 23 The figure 3 or - фото 267

Figure 2.9The cubic point group of lowest symmetry: 23

The figure 3 (or картинка 268) always occurs second in the symbol for cubic point groups, and this enables a point group in the cubic system to be distinguished from those in all other crystal systems. In a cubic crystal, mirror planes can run either parallel to {100} planes, as in Figure 2.10a, or else parallel to {110} planes, as in Figure 2.10b. The first alternative is described by putting the symbol m before картинка 269(to give m картинка 270) and the second by placing m after the 3 (or картинка 271) to give X 3 m or X m where X is an axis other than 3 or Figure 21 - фото 272 m , where X is an axis other than 3 or Figure 210Stereograms centred on 001 of a mirror planes parallel to 100 - фото 273.

Figure 210Stereograms centred on 001 of a mirror planes parallel to 100 - фото 274

Figure 2.10Stereograms centred on 001 of (a) mirror planes parallel to {100} planes and (b) mirror planes parallel to {110} planes in a cubic crystal. In both (a) and (b) the location of the four triads are shown; these are the minimum symmetry requirement for cubic crystals

If we add mirror planes parallel to {100} to the class 23 we obtain 2/ m 3, conventionally denoted m картинка 275. (Prior to the revision of the International Tables for Crystallography in 1995 this point group was denoted m 3; older textbooks will use this terminology as well.) As is evident from Figure 2.6, this contains a centre of symmetry in addition to the three diads at the intersection of three mutually perpendicular mirror planes and the four triads. The triads therefore become inversion triads, картинка 276. The multiplicity of the general form { hkl } is 24. It is worth noting from Table 2.3(see below) that when there are no diads along 〈110〉 directions nor mirrors parallel to {110}, { hk 0} and { kh 0} are separate special forms. This occurs in the classes 23 and m картинка 277.

Replacement of the diads in 23 by tetrads gives 43. Here we notice that diads automatically arise along the 〈110〉 directions, as tabulated in Table 1.2. This class is denoted 432 to indicate the diads because of later development of space groups (see Section 2.11). However, 43 is sufficient to identify it.

Replacement of 2 by картинка 278in 23 will be found to produce mirror planes automatically parallel to the {110} planes, and hence passing through the triads. Correspondingly, if mirrors parallel to {110} are added to 23 then the diad axes along the 〈100〉 directions become картинка 279axes. If we have mirror planes passing through the triad axes then parallel to the crystal axes we can have either картинка 280or 4. The first of these classes is картинка 2813 m and the second m картинка 282 m . (This latter point group was known as m 3 m conventionally prior to the 1995 revision of the International Tables for Crystallography .) In картинка 2833 m there is no centre of symmetry and there are no additional symmetry elements, other than those indicated in the symbol. The multiplicity of the general form is 24. In картинка 2843 m (as in 23), {111} and {1 картинка 2851} are separate special forms: each shows four planes parallel to the surfaces of a regular tetrahedron.

Class m картинка 286 m has mirror planes parallel to {100} and to {110}; therefore, nine mirror planes are present in all. There are six diads, three tetrads, a centre and of course the four triads. All of these can be produced by putting mirrors parallel to both {110} and {100}, coupled with the four triads. Hence the symbol m картинка 287 m is used to describe this point group, which is the cubic holosymmetric class. In full notation this would be 4/ m картинка 2882/ m , to denote the point group symmetry elements as 4/ m along the 〈100〉 directions, картинка 289along the 〈111〉 directions and 2/ m along the 〈110〉 directions. The general form has 48 faces.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Crystallography and Crystal Defects»

Представляем Вашему вниманию похожие книги на «Crystallography and Crystal Defects» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Crystallography and Crystal Defects»

Обсуждение, отзывы о книге «Crystallography and Crystal Defects» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x