Anthony Kelly - Crystallography and Crystal Defects

Здесь есть возможность читать онлайн «Anthony Kelly - Crystallography and Crystal Defects» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Crystallography and Crystal Defects: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Crystallography and Crystal Defects»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The classic book that presents a unified approach to crystallography and the defects found within crystals, revised and updated This new edition of
explains the modern concepts of crystallography in a clear, succinct manner and shows how to apply these concepts in the analyses of point, line and planar defects in crystalline materials. 
Fully revised and updated, this book now includes:
Original source references to key crystallographic terms familiar to materials scientists Expanded discussion on the elasticity of cubic materials New content on texture that contains more detail on Euler angles, orientation distribution functions and an expanded discussion on examples of textures in engineering materials Additional content on dislocations in materials of symmetry lower than cubic An expanded discussion of twinning which includes the description and classification of growth twins The inclusion and explanation of results from atomistic modelling of twin boundaries Problem sets with new questions, detailed worked solutions, supplementary lecture material and online computer programs for crystallographic calculations. Written by authors with extensive lecturing experience at undergraduate level,
continues to take its place as the core text on the topic and provides the essential resource for students and researchers in metallurgy, materials science, physics, chemistry, electrical, civil and mechanical engineering.

Crystallography and Crystal Defects — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Crystallography and Crystal Defects», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

To plot a stereogram of an orthorhombic crystal centred on 001 if we are given the lattice parameters a, b and c , we proceed as shown in Figure 2.8. In Figure 2.8a the poles of the (001), (010) and (100) planes are immediately inserted at the centre of the primitive and where the x ‐ and y ‐axes cut the primitive, respectively. A pole ( hk 0) can be inserted at an angle θ along the primitive to (100), as shown in Figure 2.8a, by noting from Figure 2.8b (which is a section of the crystal parallel to (001) showing the intersection of the plane ( hk 0) with the crystal axes) that the pole of (100) lies along OM , that ( hk 0) makes intercepts on the crystal axes of a/h along the x ‐axis and b/k along the y ‐axis, and that θ is the angle between the normal to ( hk 0) and the normal to (100). From Figure 2.8b we have:

That is 21a where 100 hk 0 means the angle between the 100 and - фото 257

That is:

(2.1a) where 100 hk 0 means the angle between the 100 and hk 0 planes that - фото 258

where (100) ∧( hk 0) means the angle between the (100) and ( hk 0) planes; that is, the angle between the pole of (100) and the pole of ( hk 0). Similarly, if the lattice parameters are given, we can locate (0 kl ) and ( h 0 l ), since:

(2.1b) and 21c Figure 28a General location of - фото 259

and:

(2.1c) Figure 28a General location of a hk 0 pole on the stereogram of an - фото 260

Figure 28a General location of a hk 0 pole on the stereogram of an - фото 261

Figure 2.8(a) General location of a hk 0 pole on the stereogram of an orthorhombic crystal, (b) geometry to determine the angle θ between the 100 pole and the hk 0 pole, (c) location of the hkl pole given the locations of the hk 0, h 0 l and 0 kl poles, (d) the location of the 311 pole given the locations of the 100, 010, 001, 011 and 310 poles

These relations can be seen immediately by drawing diagrams similar to Figure 2.8b but looking along the x ‐ and y ‐axes, respectively. When poles such as ( h 0 l ), (0 kl ) and ( hk 0) have been inserted on the stereogram, we can insert a pole such as ( hkl ) immediately by use of the zone addition rule, given in Section 1.3, Eq. (1.20).

If two poles ( h 1 k 1 l 1), ( h 2 k 2 l 2) both lie in the same zone with the indices [ uvw ] then so does the pole of the plane ( mh 1+ nh 2, mk 1+ nk 2, ml 1+ nl 2); that is, any plane whose indices can be formed by taking linear combinations of the indices of two planes in a given zone can provide the indices of a further plane in that same zone ( Section 1.3). In general, m and n can be positive or negative, but if m and n are both positive then the pole of the plane under consideration must lie on the great circle between the poles of ( h 1 k 1 l 1) and ( h 2 k 2 l 2): this simple result can be extremely useful when locating poles on stereographic projections such as Figure 2.7.

In Figure 2.8c, after (001), (010), (100) and ( hk 0), ( h 0 l ), (0 kl ) are plotted, then to plot, say, ( hkl ), we note that ( hkl ) must lie in the zone containing (001) and ( hk 0), since if we multiply (001) by the number l and add the indices (00 l ) and ( hk 0) we obtain ( hkl ). It then follows that ( hkl ) lies somewhere on the great circle between (001) and ( hk 0). Similarly, ( hkl ) lies in the zone containing (0 kl ) and (100), since h times (100) gives ( h 00) and this added to (0 kl ) gives ( hkl ). Again, it is true that ( hkl ) lies somewhere on the great circle between (0 kl ) and (100), but we can now rationalize that ( hkl ) must lie at the intersection of the two great circles we have considered. We then draw the great circle (or zone) containing (001) and ( hk 0) and that containing (001) and (0 kl ) and we know that ( hkl ) is situated where these intersect.

A particular example may make the procedure clear. Suppose we wish to locate (311) after plotting (001), (010) and (100) ( Figure 2.8d). One way to proceed would be to locate (011) using Eq.(2.1b), setting k = 1 and l = 1 and using the known lattice parameters. We then find (310), on the primitive, by finding the angle between (100) and (310) from Eq.(2.1a), setting h = 3 and k = 1. Finally, we note that (311) lies in the zone containing (001) and (310), since (001) plus (310) yields (311). Also, (311) lies in the zone containing (100) and (011) since three times (100) plus (011) yields (311). The pole of (311) is then immediately located by drawing the great circle through (001) and (310) and that through (011) and (100); (311) is located where these great circles meet.

Using the above procedure for locating poles is usually the quickest way to draw an accurate stereogram when key poles have been located either by calculation or through the use of a computer software package. It must be strongly emphasized that, although we have chosen the orthorhombic system as an example, the use of Eq. (1.20) to locate poles applies to any crystal system and does not depend on the crystal axes being at any particular angle to one another. The utility of Eq. (1.20) is one of the great advantages of the Miller index for denoting crystal planes, and arises naturally from the properties of a space lattice.

Equations such as those in Eq. (2.1) can of course be used to find the ratio of the lattice parameters – the axial ratios – from measurements of the angles between poles.

2.3 Tetragonal System

The tetrad axis is always taken parallel to the z ‐axis. The lattice parameters a and b are equal.

The holosymmetric point group is 4/ mmm , showing three mutually perpendicular mirror planes with a tetrad normal to one of them ( Figure 2.6). If a single pole is repeated according to the presence of these symmetry elements it will be found that diad axes are necessarily present normal to the mirrors and that, in addition, a second pair of diad axes also normal to mirror planes automatically arises. One of the pairs of mutually perpendicular diads is chosen as defining the directions of the x ‐ and y ‐axes. The general form is { hkl }, with a multiplicity of 16. Special forms are {001}, {100}, {110}, { hk 0}, { h 0 l } and { hhl }. The last of these, { hhl }, indicates a face making equal intercepts on the x ‐ and y ‐axes.

The point group 422 could be specified simply as 42 since if 4 and 2 are present at right angles a second pair of diad axes arises and one of these pairs is chosen to define the x ‐ and y ‐axes. The group картинка 262 m can be developed as картинка 263 m . It is then found that diad axes automatically arise at 45° to the two, mutually perpendicular, mirror planes. The pair of diad axes is taken to define the x ‐ and y ‐axes. The four other tetragonal point groups, 4, картинка 264, 4/ m and 4 mm , are straightforward and no diad axes arise.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Crystallography and Crystal Defects»

Представляем Вашему вниманию похожие книги на «Crystallography and Crystal Defects» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Crystallography and Crystal Defects»

Обсуждение, отзывы о книге «Crystallography and Crystal Defects» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x