Anthony Kelly - Crystallography and Crystal Defects

Здесь есть возможность читать онлайн «Anthony Kelly - Crystallography and Crystal Defects» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Crystallography and Crystal Defects: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Crystallography and Crystal Defects»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The classic book that presents a unified approach to crystallography and the defects found within crystals, revised and updated This new edition of
explains the modern concepts of crystallography in a clear, succinct manner and shows how to apply these concepts in the analyses of point, line and planar defects in crystalline materials. 
Fully revised and updated, this book now includes:
Original source references to key crystallographic terms familiar to materials scientists Expanded discussion on the elasticity of cubic materials New content on texture that contains more detail on Euler angles, orientation distribution functions and an expanded discussion on examples of textures in engineering materials Additional content on dislocations in materials of symmetry lower than cubic An expanded discussion of twinning which includes the description and classification of growth twins The inclusion and explanation of results from atomistic modelling of twin boundaries Problem sets with new questions, detailed worked solutions, supplementary lecture material and online computer programs for crystallographic calculations. Written by authors with extensive lecturing experience at undergraduate level,
continues to take its place as the core text on the topic and provides the essential resource for students and researchers in metallurgy, materials science, physics, chemistry, electrical, civil and mechanical engineering.

Crystallography and Crystal Defects — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Crystallography and Crystal Defects», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

2.12.2 Glide Planes

The operation of glide plane repetition is shown in Figure 2.22c. Again, the magnitude of the translation will be of the order of the lattice parameters. Macroscopically, the glide plane in Figure 2.22c would show itself as a mirror plane.

Glide planes are described as axial glide planes if the translation parallel to the mirror is parallel to a single axis of the unit cell and equal to one‐half of the lattice parameter in that direction. Such glide planes are given the symbols a , b , or c , corresponding to the directions of the glide translations. A diagonal glide plane involves a translation of one‐half of a face diagonal or one‐half of a body diagonal (the latter in the tetragonal and cubic systems), and is given the symbol n . A diamond glide plane , given the symbol d , can only occur in orthorhombic F , tetragonal I , and cubic I and F lattices. In orthorhombic F lattices, this involves a translation of one‐quarter of a face diagonal, whereas in the tetragonal and cubic lattices this involves a translation of one-quarter of a body diagonal.

2.12.3 Combinations of Symmetry Operations to Form Space Groups

When we combine the operations of rotation with translation and look for the possible consistent combinations we can start with the point group and associate its symmetry elements with each lattice point of the lattices consistent with it. From the number of Bravais lattices and number of point groups detailed in Figures 1.19and 2.6it might be expected that 66 space groups could be obtained (2 triclinic, 6 monoclinic, 12 orthorhombic, 14 tetragonal, 5 trigonal with a rhombohedral lattice, 5 trigonal with a hexagonal lattice, 7 hexagonal, and 15 cubic). Seven additional ones arise because of cases in which the glide planes or screw axes automatically arising are different for different orientations of the point group with respect to the lattice; for example, in the tetragonal system картинка 437and картинка 438are distinct space groups. The 14 space groups for which this consideration is relevant are Cmm2 , Amm 2 (≡ C 2 mm ), P картинка 4392 m , P картинка 440 m 2, картинка 441, картинка 442, P картинка 443 m 2, P картинка 4442 m , P 312, P 321, P 3 m 1, P 31 m , P картинка 445 m 1 and P картинка 4461 m . Therefore, there are 73 such space groups, referred to as arithmetic crystal classes in Section 1.3.4 of the sixth edition of the International Tables for Crystallography [3].

When the possibilities of introducing screw axes to replace pure rotational axes and glide planes to replace mirror planes are taken into consideration, the result is to produce the total of 230 different space groups [3]. Of particular note are the space groups in the trigonal crystal system. Of the 25 trigonal space groups, only seven have a rhombohedral unit cell ( R 3, R картинка 447, R 32, R 3 m , R 3 c , R картинка 448 m , R картинка 449 c ); the majority have a primitive hexagonal unit cell. Buerger [1] argues that ‘to refer one crystal of the trigonal class to rhombohedral axes, and another to hexagonal axes, because the lattice types are R and P respectively, leads to confusion’ (p. 106) and discourages the use of rhombohedral axes for this reason. It is certainly the case in the scientific literature that the use of rhombohedral axes for crystals where the space group is one of the seven rhombohedral space groups is markedly less prevalent than the use of hexagonal axes.

In centred cells, the possibility of a ‘double’ glide plane arises, given the symbol e . This symmetry operation is recognized officially in the fifth and sixth editions of the International Tables for Crystallography and incorporated into the conventional space group symbols of five orthorhombic space groups, Aem 2, Aea 2, Cmce , Cmme , and Ccce . In this operation, two glide reflections occur through the plane under consideration, with glide vectors perpendicular to one another related by a centring translation [3]. Seventeen space groups have these ‘double’ glide planes, recognized in the footnotes to Tables 2.1.2.2 and 2.1.2.3 of [3], but in 12 of these cases the ‘double’ glide planes are parallel to mirror planes. Therefore, their existence is not immediately apparent from the space group symbol because the mirror planes are stronger symmetry elements than the ‘double’ glide planes.

The arrangements of all of the symmetry elements in the 230 space groups are listed in the various editions of the International Tables for Crystallography . The numbers allocated to the various space groups are such that the space groups are in the sequence introduced by Schoenflies in 1891 [13], starting with the two triclinic space groups and finishing with the 36 cubic space groups.

Of particular interest to most materials scientists are the coordinates of general and special positions within each unit cell and diagrams showing the symmetry elements. More recent editions of the International Tables for Crystallography have extensive descriptions of space groups, which also include listings of maximal subgroups and minimal supergroups; these concepts will be discussed in general terms in Sections 2.14and 2.15.

2.12.4 The Relationship Between the Space Group Symbol and the Point Group Symmetry for a Crystal

The conventional space group symbol shows that the space groups have been built up by placing a point group at each of the lattice points of the appropriate Bravais lattice. Thus, for example, Fm картинка 450 m (in full, F 4/ m картинка 4512/ m ) means the cubic face‐centred lattice with the point group m картинка 452 m associated with each lattice point; P 6 3/ mmc (in full, P 6 3/ m 2/ m 2/ c ) is a hexagonal primitive lattice derived from P 6 /mmm by replacing the sixfold rotation axis by 6 3and one of the mirror planes by a c ‐axis glide plane. P 6 3/ mmc and P 6 /mmm share the same point group symmetry. The point group symmetry of any crystal is derived immediately from the space group symbol by replacing screw axes by the appropriate rotational axes and glide planes by mirror planes in the space group symbol.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Crystallography and Crystal Defects»

Представляем Вашему вниманию похожие книги на «Crystallography and Crystal Defects» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Crystallography and Crystal Defects»

Обсуждение, отзывы о книге «Crystallography and Crystal Defects» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x